Marathon Computer Computer Monitor AACC 2000 User Manual

Marathon Monitors Inc.  
AACC 2000 (Carbon) Monitor / Controller  
Installation and Operation Handbook  
COPYRIGHT © 1998  
MARATHON MONITORS INC  
 
Marathon Monitors Inc.  
Table of contents:  
SAFETY and EMC INFORMATION ................................................................... 4  
Installation Safety Requirements........................................................................... 5  
Installation requirements for EMC.................................................................... 7  
Technical Specification......................................................................................... 8  
Installation ..........................................................................................................11  
Introduction.....................................................................................................13  
MECHANICAL INSTALLATION ..................................................................13  
Wiring of 2-wire EIA-485 serial communications link.....................................21  
OPERATION ......................................................................................................23  
FRONT PANEL LAYOUTs.............................................................................24  
Basic operation ................................................................................................26  
Operating modes..............................................................................................27  
Automatic mode...............................................................................................28  
MANUAL MODE ...........................................................................................29  
PARAMETERS AND HOW TO ACCESS THEM...........................................30  
Parameter names..............................................................................................32  
Navigation Diagram.........................................................................................33  
PARAMETER TABLES..................................................................................37  
Alarms.............................................................................................................44  
Diagnostic alarms ............................................................................................45  
ACCESS LEVELS ..............................................................................................47  
Edit level .........................................................................................................50  
Setting operator access to a parameter..............................................................50  
TUNING .............................................................................................................53  
AUTOMATIC TUNING..................................................................................54  
MANUAL TUNING ........................................................................................56  
Setting the cutback values................................................................................57  
motorized valve control....................................................................................59  
Gain scheduling...............................................................................................62  
CONFIGURATION.............................................................................................63  
Selecting configuration level............................................................................64  
Changing the passwords ..................................................................................65  
User calibration ...................................................................................................85  
User Calibration Enable...................................................................................86  
Offset calibration .............................................................................................87  
Two-point calibration.......................................................................................89  
Calibration points and Calibration offsets.........................................................92  
Parameter Table (Default)....................................................................................93  
INDEX..............................................................................................................102  
AACC 2000 Carbon  
Nov. 1, 1997  
3
 
Marathon Monitors Inc.  
SAFETY and EMC INFORMATION  
Please read this section carefully before installing the controller  
This controller is intended for industrial temperature and process control applications where  
it will meet the requirements of the European Directives on Safety and EMC. Use in other  
applications, or failure to observe the installation instructions of this handbook may impair  
the safety or EMC protection provided by the controller. It is the responsibility of the  
installer to ensure the safety and EMC of any particular installation.  
Safety  
This controller complies with the European Low Voltage Directive 73/23/EEC, amended by  
93/68/EEC, by the application of the safety standard EN 61010.  
Electromagnetic compatibility  
This controller conforms with the essential protection requirements of the EMC Directive  
89/336/EEC, amended by 93/68/EEC, by the application of a Technical Construction File.  
This instrument satisfies the general requirements of an industrial environment as described  
by EN 50081-2 and EN 50082-2. For more information on product compliance refer to the  
Technical Construction File.  
SERVICE AND REPAIR  
This controller has no user serviceable parts. Contact your nearest MMI Service center  
(800-322-4444) for repair.  
Caution: Charged capacitors  
Before removing an instrument from its case, disconnect the supply and wait at least two  
minutes to allow capacitors to discharge. Failure to observe this precaution will expose  
capacitors that may be charged with hazardous voltages. In any case, avoid touching the  
exposed electronics of an instrument when withdrawing it from the case.  
Electrostatic discharge precautions  
When the controller is removed from its case, some of the exposed electronic components  
are vulnerable to damage by electrostatic discharge from someone handling the controller.  
To avoid this, before handling the unplugged controller discharge yourself to ground.  
Cleaning  
Do not use water or water based products to clean labels or they will become illegible.  
Isopropyl alcohol may be used to clean labels. A mild soap solution may be used to clean  
other exterior surfaces of the product.  
AACC 2000 Carbon  
Nov. 1, 1997  
4
 
Marathon Monitors Inc.  
Installation Safety Requirements  
Safety Symbols  
Various symbols are used on the instrument, they have the following meaning:  
Caution, (refer to the  
accompanying documents)  
Functional earth  
(ground) terminal  
!
The functional earth connection is not required for safety purposes but to ground RFI filters.  
Personnel  
Installation must only be carried out by qualified personnel.  
Enclosure of live parts  
To prevent hands or metal tools touching parts that may be electrically live, the controller  
must be installed in an enclosure.  
Caution: Live sensors  
The fixed digital inputs, non-isolated dc, logic and outputs and the logic output of dual  
output modules, are all electrically connected to the main process variable input. If the  
temperature sensor is connected directly to an electrical heating element then these non-  
isolated inputs and outputs will also be live. The controller is designed to operate under  
these conditions. However you must ensure that this will not damage other equipment  
connected to these inputs and outputs and that service personnel do not touch connections to  
these i/o while they are live. With a live sensor, all cables, connectors and switches for  
connecting the sensor and non-isolated inputs and outputs must be mains rated.  
Wiring  
It is important to connect the controller in accordance with the wiring data given in this  
handbook. Take particular care not to connect AC supplies to the low voltage sensor input  
or other low level inputs and outputs. Only use copper conductors for connections (except  
thermocouple inputs) and ensure that the wiring of installations comply with all local wiring  
regulations. For example in the in the UK use the latest version of the IEE wiring  
regulations, (BS7671). In the USA use NEC Class 1 wiring methods.  
Power Isolation  
The installation must include a power isolating switch or circuit breaker. This device  
should be in close proximity to the controller, within easy reach of the operator and marked  
as the disconnecting device for the instrument.  
Earth leakage current  
Due to RFI Filtering there is an earth leakage current of less than 0.5mA. This may affect  
the design of an installation of multiple controllers protected by Residual Current Device,  
(RCD) or Ground Fault Detector, (GFD) type circuit breakers.  
AACC 2000 Carbon  
Nov. 1, 1997  
5
 
Marathon Monitors Inc.  
Overcurrent protection  
To protect the internal PCB tracking within the controller against excess currents, the AC  
power supply to the controller and power outputs must be wired through the fuse or circuit  
breaker specified in the technical specification.  
Voltage rating  
The maximum continuous voltage applied between any of the following terminals must not  
exceed 264Vac:  
·
·
·
line or neutral to any other connection;  
relay or triac output to logic, dc or sensor connections;  
any connection to ground.  
The controller should not be wired to a three phase supply with an unearthed star  
connection. Under fault conditions such a supply could rise above 264Vac with respect to  
ground and the product would not be safe.  
Voltage transients across the power supply connections, and between the power supply and  
ground, must not exceed 2.5kV. Where occasional voltage transients over 2.5kV are  
expected or measured, the power installation to both the instrument supply and load circuits  
should include a transient limiting device.  
These units will typically include gas discharge tubes and metal oxide varistors that limit  
and control voltage transients on the supply line due to lightning strikes or inductive load  
switching. Devices are available in a range of energy ratings and should be selected to suit  
conditions at the installation.  
Conductive pollution  
Electrically conductive pollution must be excluded from the cabinet in which the controller  
is mounted. For example, carbon dust is a form of electrically conductive pollution. To  
secure a suitable atmosphere in conditions of conductive pollution, fit an air filter to the air  
intake of the cabinet. Where condensation is likely, for example at low temperatures,  
include a thermostatically controlled heater in the cabinet.  
Over-temperature protection  
When designing any control system it is essential to consider what will happen if any part of  
the system should fail. In temperature control applications the primary danger is that the  
heating will remain constantly on. Apart from spoiling the product, this could damage any  
process machinery being controlled, or even cause a fire.  
Reasons why the heating might remain constantly on include:  
·
·
·
·
·
the temperature sensor becoming detached from the process;  
thermocouple wiring becoming a short circuit;  
the controller failing with its heating output constantly on;  
an external valve or contactor sticking in the heating condition;  
the controller setpoint set too high.  
AACC 2000 Carbon  
Nov. 1, 1997  
6
 
Marathon Monitors Inc.  
Where damage or injury is possible, we recommend fitting a separate over-temperature  
protection unit, with an independent temperature sensor, which will isolate the heating  
circuit.  
Please note that the alarm relays within the controller will not give protection under all  
failure conditions.  
Grounding of the temperature sensor shield  
In some installations it is common practice to replace the temperature sensor while the  
controller is still powered up. Under these conditions, as additional protection against  
electric shock, we recommend that the shield of the temperature sensor is grounded. Do not  
rely on grounding through the framework of the machine.  
Installation requirements for EMC  
To ensure compliance with the European EMC directive certain installation precautions are  
necessary as follows:  
·
·
For general guidance refer to MMI Controls EMC Installation Guide, HA025464.  
When using relay or triac outputs it may be necessary to fit a filter suitable for  
suppressing the emissions. The filter requirements will depend on the type of load. For  
typical applications we recommend Schaffner FN321 or FN612.  
·
If the unit is used in table top equipment which is plugged into a standard power socket,  
then it is likely that compliance to the commercial and light industrial emissions  
standard is required. In this case to meet the conducted emissions requirement, a  
suitable mains filter should be installed. We recommend Schaffner types FN321 and  
FN612.  
Routing of wires  
To minimise the pick-up of electrical noise, the wiring for low voltage dc and particularly  
the sensor input should be routed away from high-current power cables. Where it is  
impractical to do this, use shielded cables with the shield grounded at both ends.  
AACC 2000 Carbon  
Nov. 1, 1997  
7
 
Marathon Monitors Inc.  
Technical Specification  
Environmental ratings  
Panel sealing:  
Instruments are intended to be panel mounted. The  
rating of panel sealing is IP65, (EN 60529), or 4X, (NEMA  
250).  
Operating temperature:  
ventilation.  
0 to 55oC. Ensure the enclosure provides adequate  
Relative humidity:  
Atmosphere:  
5 to 95%, non condensing.  
The instrument is not suitable for use above 2000m  
or in explosive or corrosive atmospheres.  
Equipment ratings  
Supply voltage:  
100 to 240Vac -15%, +10%, or optionally:  
48 to 62Hz.  
15 Watts maximum.  
Supply frequency:  
Power consumption:  
Relay 2-pin (isolated):  
Maximum: 264Vac, 2A resistive. Minimum: 12Vdc, 100mA.  
Relay changeover (isolated): Maximum: 264Vac, 2A resistive. Minimum: 6Vdc, 1mA.  
Triac outputs (isolated):  
Leakage current:  
30 to 264Vac. Maximum current: 1A resistive.  
The leakage current through triac and relay contact  
suppression components is less than 2mA at 264Vac, 50Hz.  
External over current protection devices are required that  
match the wiring of the installation. A minimum of 0.5mm2 or  
16awg wire is recommended. Use independent fuses for the  
instrument supply and each relay or triac output. Suitable  
fuses are T type, (EN 60127 time-lag type) as follows;  
Instrument supply: 85 to 264Vac, 2A, (T).  
Over current protection:  
Relay outputs: 2A (T). Triac outputs: 1A (T).  
Low level i/o:  
All input and output connections other than triac and relay are  
intended for low level signals less than 42V.  
Single logic output:  
DC output (Isolated):  
DC output (Non isolated): 0 to 20mA (600W max), 0 to 10V (500W min).  
Fixed digital inputs:  
Triple contact input:  
Triple logic input:  
DC or 2nd PV input:  
18V at 24mA. (Non-isolated.)  
0 to 20mA (600W max), 0 to 10V (500W min).  
Contact closure. (Non isolated.)  
Contact closure. (Isolated.)  
11 to 30Vdc. (Isolated.)  
As main input plus 0-1.6Vdc, Impedance, >100MW.  
(Isolated.)  
Potentiometer input:  
Transmitter supply:  
Strain gauge supply:  
Digital Communications:  
0.5V excitation, 100W to 1.5kW Potentiometer. (Isolated.)  
24Vdc at 20mA. (isolated.)  
10Vdc. Minimum bridge resistance 300W. (Isolated.)  
EIA-232, 2-wire EIA-485 or 4-wire EIA-485 (All isolated).  
AACC 2000 Carbon  
Nov. 1, 1997  
8
 
Marathon Monitors Inc.  
General  
Main PV Input range:  
Calibration accuracy:  
+100mV, 0 to 10Vdc (auto ranging) and 3 wire Pt100.  
The greater of +0.2% of reading, +1 LSD or +1oC.  
Cold junction compensation >30:1 rejection of ambient temperature, (for thermocouple  
i/p).  
Electrical safety  
Standards:  
EN 61010, Installation category II, pollution degree  
2.  
CSA C22.2 No.142-M1987.  
Installation category II:  
Pollution degree 2:  
Isolation:  
Voltage transients on any mains power connected to the  
instrument must not exceed 2.5kV.  
Conductive pollution must be excluded from the  
cabinet in which the instrument is mounted.  
All isolated inputs and outputs have reinforced  
insulation to provide protection against electric shock. The  
fixed digital inputs, non-isolated dc, logic, and the logic output  
of dual output modules, are all electrically connected to the  
main process variable input, (thermocouple etc.).  
AACC 2000 Carbon  
Nov. 1, 1997  
9
 
Marathon Monitors Inc.  
AACC 2000 Carbon  
Nov. 1, 1997  
10  
 
Marathon Monitors Inc.  
Installation  
Case  
Terminal  
Ratchets  
Display screen  
Label  
Panel retaining clips  
Latching ears  
Panel sealing gasket  
AACC 2000 1/4 DIN controller  
Figure 1 - 3  
AACC 2000 Carbon  
Nov. 1, 1997  
11  
 
Marathon Monitors Inc.  
Outline dimensions Model 2000  
150mm  
96mm  
5.91in  
3.78in  
96mm  
3.78in  
Panel cut-out  
92 x 92 mm  
Recommended  
minimum  
spacing of  
controllers  
-0  
+0.8  
-0  
3.62 x 3.62 in +0.03  
Figure 1-4 Outline dimensions Model 2000 controller  
The electronic assembly of the controller plugs into a rigid plastic case, which in turn fits  
into the standard DIN size panel cut-out shown in Figures 1-3 and 1-4.  
AACC 2000 Carbon  
Nov. 1, 1997  
12  
 
Marathon Monitors Inc.  
Introduction  
Model AACC 2000’s are high stability, process controllers with self and adaptive tuning.  
They have a modular hardware construction which accepts up to three plug-in Input/Output  
modules and two interface modules to satisfy a wide range of control requirements. Two  
digital inputs and an optional alarm relay are included as part of the standard hardware.  
Before proceeding, please read the, Safety and EMC Information.  
Controller labels  
The labels on the sides of the controller identify the ordering code, the serial number, and  
the wiring connections.  
Appendix A, Understanding the Ordering Code, explains the hardware and software  
configuration of your particular controller.  
MECHANICAL INSTALLATION  
To install the controller  
1. Prepare the control panel cut-out to the size shown in Figure 1-3, or 1-4.  
2. Insert the controller through the panel cut-out.  
3. Spring the upper and lower panel retaining clips into place. Secure the controller in  
position by holding it level and pushing both retaining clips forward.  
Note: If the panel retaining clips subsequently need removing, in order to extract the  
controller from the control panel, they can be unhooked from the side with either your  
fingers, or a screwdriver.  
Unplugging and plugging-in the controller  
If required, the controller can be unplugged from its case by easing the latching ears  
outwards and pulling it forward out of the case. When plugging the controller back into its  
case, ensure that the latching ears click into place in order to secure the IP65 sealing.  
AACC 2000 Carbon  
Nov. 1, 1997  
13  
 
Marathon Monitors Inc.  
All electrical connections are made to the screw terminals at the rear of the controller. If  
you wish to use crimp connectors, the correct size is AMP part number 349262-1. They  
accept wire sizes from 0.5 to 1.5 mm2 (16 to 22 AWG). A set of connectors is supplied with  
the controller. The terminals are protected by a clear plastic hinged cover to prevent hands,  
or metal, making accidental contact with live wires.  
Rear terminal layouts  
The rear terminal layouts are shown in Figure 1-6. The right-hand column carries the  
connections to the power supply, digital inputs 1 and 2, alarm relay and sensor input. The  
second and third columns from the right carry the connections to the plug-in modules. The  
connections depend upon the type of module installed, if any. To determine which plug-in  
modules are fitted, refer to the ordering code and wiring data on the controller side labels.  
Model AACC 2000 rear terminal layout  
Figure 1-6 Rear terminal layout  
AACC 2000 Carbon  
Nov. 1, 1997  
14  
 
Marathon Monitors Inc.  
The display below shows a typical wiring diagram for the AACC2000  
Carbon Controller:  
Typically a series of letters appear after the part number, see chart below.  
D – Dual Relay  
A – Analog Output  
X – Not Installed  
C – Communications  
I – Analog Input (typically in position 3)  
AACC 2000 Carbon  
Nov. 1, 1997  
15  
 
Marathon Monitors Inc.  
Sensor input connections  
The connections for the various types of sensor input are shown below.  
Resistance  
thermometer  
Thermocouple  
mA input  
Volts or mV inputs  
V1  
V+  
V1  
V1  
V+  
V1  
V+  
2.49W  
current  
sense  
V+  
P
V
resistor  
v-  
v-  
v-  
v-  
Fig 1-7 Sensor input connections  
PLUG-IN MODULE CONNECTIONS  
Module 1, 2 and 3  
Module positions 1, 2 and 3 are plug-in modules. They can be either two terminal modules  
of the types shown in Table 1-1, or four terminal modules of the types shown in Table 1-2.  
The tables show the connections to each module and the functions that they can perform.  
AACC 2000 Carbon  
Nov. 1, 1997  
16  
 
Marathon Monitors Inc.  
Two terminal modules  
Note:  
Module 1 is connected to terminals 1A and 1B  
Module 2 is connected to terminals 2A and 2B  
Module 3 is connected to terminals 3A and 3B.  
Terminal identity  
Module type  
Relay: 2-pin  
A
B
C
D
Possible functions  
Unused  
Unused  
Heating, cooling, alarm,  
program event, valve raise,  
or valve lower  
(2A, 264 Vac max.)  
Logic - non-isolated  
Heating, cooling, mode 1,  
mode 2, program event  
+
-
(18Vdc at 20mA)  
Triac  
Unused  
Unused  
Heating, cooling, program  
event, valve raise, or valve  
lower  
(1A, 30 to 264Vac)  
Line  
Load  
DC output:  
- non-isolated  
Heating, or cooling, or  
retransmission of PV,  
setpoint, or control output  
+
-
(10Vdc, 20mA max.)  
Table 1-1 Two terminal module connections  
Snubbers  
The relay and triac modules have an internal 15nF/100W ‘snubber’ connected across their  
output, which is used to prolong contact life and to suppress interference when switching  
inductive loads, such as mechanical contactors and solenoid valves.  
WARNING  
When the relay contact is open, or the triac is off, the snubber circuit passes 0.6mA at  
110Vac and 1.2mA at 240Vac. You must ensure that this current, passing through the  
snubber, will not hold on low power electrical loads. It is your responsibility as the  
installer to ensure that this does not happen. If the snubber circuit is not required, it  
can be removed from the relay module (BUT NOT THE TRIAC) by breaking the PCB  
track that runs crosswise, adjacent to the edge connectors of the module. This can be  
done by inserting the blade of a small screwdriver into one of the two slots that bound  
it, and twisting.  
AACC 2000 Carbon  
Nov. 1, 1997  
17  
 
Marathon Monitors Inc.  
Four terminal modules  
Note:  
Module 1 is connected to terminals 1A, 1B, 1C and 1D  
Module 2 is connected to terminals 2A, 2B, 2C and 2D  
Module 3 is connected to terminals 3A, 3B, 3C and 3D  
Module type  
Terminal identity  
Possible functions  
A
B
C
D
Heating, cooling,or  
alarm,  
lay: changeover  
(2A, 264 Vac max.)  
DC control: Isolated  
(10V, 20mA max.)  
Heating, or cooling  
+
-
To power process  
inputs  
24Vdc transmitter supply  
+
-
Motorised Valve  
Position feedback  
Potentiometer input  
100W to 15KW  
0V  
+0.5Vdc  
Retrans. of setpoint,  
or process value  
DC retransmission  
+
-
DC remote input or  
Process Value 2  
(Module 3 only)  
Remote Setpoint  
Second PV  
±100mV  
0-20mA  
0-10Vdc RT source  
COM  
(Refer to Fig. 1-8)  
Dual output modules  
Heating + cooling  
Dual alarms  
Valve raise & lower  
Dual relay  
(2A, 264 Vac max.)  
Dual Triac  
(1A, 30 to 264Vac)  
Heating + cooling  
Valve raise & lower  
Load  
Line  
Line  
Load  
Line  
Dual logic + relay  
(Logic is non-isolated)  
Heating + cooling  
+
-
Dual Logic + triac  
(Logic is non-isolated)  
Heating + cooling  
+
-
Load  
Triple logic input and output modules - see ratings on the next page  
Triple contact input  
Triple logic input  
Input 1  
Input 1  
Input 2  
Input 2  
Input 3  
Input 3  
Common  
Common  
Table 1-2 Four terminal module connections.  
AACC 2000 Carbon  
Nov. 1, 1997  
18  
 
Marathon Monitors Inc.  
Connections for Process Value 3 in module position 3  
Thermocouple  
Resistance  
mA input  
Volts or  
10V inputs  
thermometer  
mV inputs  
+
3A  
3B  
3A  
3B  
3A  
3B  
3A  
3B  
3A  
Current  
sense  
resistor  
2.49W  
+
3B  
0-10Vdc  
+
3C  
3C  
3D  
3C  
3D  
3C  
3C  
3D  
0-1.6Vdc  
High Impedance  
or mVdc  
-
-
3D  
3D  
-
-
Figure 1-8 Connections for Process Value 2 (PV2)  
The diagrams above show the connections for the various types of input.  
The input will have been configured in accordance with the ordering code.  
AACC 2000 Carbon  
Nov. 1, 1997  
19  
 
Marathon Monitors Inc.  
Communication module 1  
The Models AACC 2000 will accept a plug-in communications modules.  
The possible module types are shown in the table below.  
The serial communications can be configured for either Modbus, or MMI protocol.  
Communications module 1  
Terminal identity (COMMS 1)  
Module type  
HA  
HB  
HC  
HD  
HE  
HF  
2-wire EIA-485 serial  
communications  
-
-
-
Common  
A (-)  
B (+)  
EIA-232 serial communications  
-
-
-
Common  
Rx  
Tx  
Table 1-3 Communication module 1 connections  
AACC 2000 Carbon  
Nov. 1, 1997  
20  
 
Marathon Monitors Inc.  
Wiring of 2-wire EIA-485 serial communications link  
PC  
2-wire EIA-485 is a connection which allows up to 32  
controllers to be multi-dropped from a single  
Com  
TX  
RX  
communications link over a distance of up to 1.2Km.  
To ensure reliable operation of the communications  
link, (without data corruption due to noise or line  
reflections) the connections between the controller  
should be made using a twisted pair of wires inside a  
screened cable with the connections terminated with  
resistors in the manner shown in this diagram.  
Local  
Earth  
232  
Local  
Earth  
Com  
RX  
TX  
MMI Universial  
Converter  
A
Com  
B
A
HE -  
Series 2000  
Controller  
B
Com  
HF+  
HD  
Local  
Earth  
Local  
Ground  
Zone 1  
Local  
Ground  
Zone 1  
Local  
Ground  
Zone 2  
Local  
Earth  
A
A
A
B
HE-  
Galvanic  
Isolation  
Barrier  
Series 2000  
Controller  
B
B
Local  
Ground  
Zone 1  
HF+  
Com  
Com  
Com  
HD  
Local  
Earth  
Local Earth  
Local  
Ground  
Zone 1  
For reasons of safety  
do connect to  
Up to 32 S2000 controllers or  
Interface Units may  
be included on the network  
not  
local earth here.  
Local  
Earth  
A
B
HE-  
HF+  
Series 2000  
Controller  
Com  
Area 1  
HD  
Note:  
All resistors are 220 ohm 1/4W carbon composition.  
Local grounds are at equipotential. Where equipotential is not available wire into  
separate zones using a galvanic isolator.  
Use a repeater (KD845) for more than 32 units.  
Figure 1-9 EIA-485 wiring  
AACC 2000 Carbon  
Nov. 1, 1997  
21  
 
Marathon Monitors Inc.  
AACC 2000 Carbon  
Nov. 1, 1997  
22  
 
Marathon Monitors Inc.  
OPERATION  
This chapter has nine topics:  
·
·
·
·
·
·
·
·
·
FRONT PANEL LAYOUTS  
BASIC OPERATION  
OPERATING MODES  
AUTOMATIC MODE  
MANUAL MODE  
PARAMETERS AND HOW TO ACCESS THEM  
NAVIGATION DIAGRAM  
PARAMETER TABLES  
ALARMS  
AACC 2000 Carbon  
Nov. 1, 1997  
23  
 
Marathon Monitors Inc.  
FRONT PANEL LAYOUTs  
Figure 2-1 Model AACC 2000 front panel layout  
2 6 .0  
2 0 .0  
Page  
Scroll  
Down  
Up  
Button  
Button  
Button  
Button  
AACC 2000 Carbon  
Nov. 1, 1997  
24  
 
Marathon Monitors Inc.  
Button or  
indicator  
Name  
Explanation  
When lit, it indicates that the output installed in  
module position 1 is on. This is normally the  
heating output on a temperature controller.  
OP1  
OP2  
Output 1  
Output 2  
When lit, it indicates that the output installed in  
module position 2 is on. This is normally the  
cooling output on a temperature controller.  
When lit, this indicates that setpoint 2, (or a  
setpoint 3-16) has been selected.  
SP2  
Setpoint 2  
When lit, this indicates that a remote setpoint  
input has been selected.  
REM  
Remote setpoint  
‘REM’ will also flash when communications is  
active.  
When pressed, this toggles between automatic  
and manual mode:  
· If the controller is in automatic mode the  
AUTO light will be lit.  
· If the controller is in manual mode, the MAN  
light will be lit.  
Auto/Manual  
button  
The Auto/Manual button can be disabled in  
configuration level.  
· Press once to start an automatic Probe care  
cycle  
· This RUN light indicates when ever a probe  
Run/Hold button  
Page button  
care function is in progress  
Press to select a new list of parameters.  
Scroll button  
Down button  
Up button  
Press to select a new parameter in a list.  
Press to decrease a value in the lower readout.  
Press to increase a value in lower readout.  
Figure 2-3 Controller buttons and indicators  
AACC 2000 Carbon  
Nov. 1, 1997  
25  
 
Marathon Monitors Inc.  
Basic operation  
Switch on the power to the controller. It runs through a self-test sequence for about three  
seconds and then shows the process value, in the upper readout and the setpoint, in the  
lower readout. This is called the Home display.  
Process Value (PV)  
26.0  
Setpoint  
20.0  
Figure 2-4 Home display  
You can adjust the setpoint by pressing the  
or  
buttons. Two seconds after  
releasing either button, the display blinks to show that the controller has accepted the  
new value.  
OP1 will light whenever output 1 is ON. This is normally the heating output when used  
as a temperature controller.  
OP2 will light whenever output 2 is ON. This is normally the cooling output when used  
as a temperature controller.  
Note: You can get back to this display at any time by pressing  
and  
together.  
Alternatively, you will always be returned to this display if no button is pressed for 45  
seconds, or whenever the power is turned on.  
Alarms  
If the controller detects an alarm condition, it flashes an alarm message in the Home  
display. For a list of all the alarm messages, their meaning and what to do about them,  
see Alarms at the end of this chapter.  
AACC 2000 Carbon  
Nov. 1, 1997  
26  
 
Marathon Monitors Inc.  
Operating modes  
The controller has two basic modes of operation:  
·
Automatic mode in which the output is automatically adjusted to maintain the  
temperature or process value at the setpoint.  
·
Manual mode in which you can adjust the output independent of the setpoint.  
You toggle between the modes by pressing the AUTO/MAN button. The displays which  
appear in each of these modes are explained in this chapter.  
27  
AACC 2000 Carbon  
Nov. 1, 1997  
 
Marathon Monitors Inc.  
Automatic mode  
You will normally work with the controller in automatic mode. If the MAN light is on,  
press the AUTO/MAN button to select automatic mode. The AUTO light comes on  
Power on  
The Home display  
Check that the AUTO light is on.  
The upper readout shows the measured  
temperature.  
The lower readout shows the setpoint.  
To adjust the setpoint up or down, press  
or  
.
(Note: If Setpoint Rate Limit has been  
enabled, then the lower readout will show  
the active setpoint. If  
it will change to show and allow  
adjustment of, the target setpoint.)  
or  
is pressed,  
Press once  
Display units  
A single press of  
will flash the  
display units for 0.5 seconds, after which  
you will be returned to the Home display.  
Flashing of the display units may have  
been disabled in configuration in which  
case a single press will take you straight to  
the display shown below.  
x 2  
Press  
twice  
% Output power demand  
The % output power demand is displayed  
in the lower readout. This is a read-only  
value. You cannot adjust it.  
Press  
and  
together to return to the  
Home display.  
Pressing  
from the Output Power display may access further parameters. These may  
be in this scroll list if the ‘Promote’ feature has been used (see Chapter 3, Access Level).  
When you reach the end of this scroll list, pressing  
display.  
will return you to the Home  
28  
AACC 2000 Carbon  
Nov. 1, 1997  
 
Marathon Monitors Inc.  
MANUAL MODE  
If the AUTO light is on, press the AUTO/MAN button to select manual mode.  
The MAN light comes on.  
Power on  
The Home display  
Check that the MAN light is on.  
The upper readout shows the measured  
temperature, or process value. The lower  
readout shows the % output.  
To adjust the output, press  
or . .  
(Note: If Output Rate Limit has been enabled,  
then the lower readout will show the working  
output. If  
or  
.
is pressed, it will  
change to show and allow adjustment of, the  
target output.)  
Press  
once.  
Display units  
A single press of  
flashes the display units  
for 0.5 seconds, after which you are returned  
to the Home display.  
Flashing of the display units may have been  
disabled in configuration, in which case a  
single press will take you straight to the  
display shown below.  
x 2  
Press  
twice.  
Setpoint  
To adjust the setpoint value, press  
or  
.
Press  
.
Pressing  
from the Output Power display may access further parameters. These may  
be in this scroll list if the ‘Promote’ feature has been used (see Chapter 3, Edit Level).  
When you reach the end of this scroll list, pressing  
display.  
will return you to the Home  
29  
AACC 2000 Carbon  
Nov. 1, 1997  
 
Marathon Monitors Inc.  
PARAMETERS AND HOW TO ACCESS THEM  
Parameters are settings, that determine how the controller will operate. For  
example, alarm setpoints are parameters that set the points at which alarms will  
occur. For ease of access, the parameters are arranged in lists as shown in the  
navigation diagram on Pages 2-10 and 2-11. The lists are:  
Home list  
Probe list  
Care list  
User list  
Autotune list  
PID list  
Motor list  
Setpoint list  
Input list  
Output list  
Communications  
list  
Information list  
Access list.  
Alarm list  
Each list has a ‘List Header’ display.  
List header displays  
List name  
Always displays Li ST  
Figure 2-5 Typical list header  
display  
A list header can be recognized by the fact that it always shows ‘Li St ’ in the  
lower readout. The upper readout is the name of the list. In the above example,  
AL’ indicates that it is the Alarm list header. List header displays are read-  
only.  
To step through the list headers, press  
. Depending upon how your controller  
has been configured, a single press may momentarily flash the display units. If  
this is the case, a double press will be necessary to take you to the first list  
header. Keep pressing  
you to the Home display.  
to step through the list headers, eventually returning  
To step through the parameters within a particular list, press  
. When you  
reach the end of the list, you will return to the list header. From within a list you  
AACC 2000 Carbon  
Nov. 1, 1997  
30  
 
Marathon Monitors Inc.  
can return to the current list header at any time can by pressing  
. To step to  
the next list header, press  
once again.  
AACC 2000 Carbon  
Nov. 1, 1997  
31  
 
Marathon Monitors Inc.  
Parameter names  
In the navigation diagram, each box shows the display for a selected parameter.  
The Operator parameter tables, later in this chapter, list all the parameter names  
and their meanings.  
The navigation diagram shows all the parameters that can, potentially, be  
present in the controller. In practice, a limited number of them appear, as a  
result of the particular configuration.  
The shaded boxes in the diagram indicate parameters that are hidden in normal  
operation. To view all the available parameters, you must select Full access  
level. For more information about this, see Chapter 3, Access Levels.  
Parameter displays Each list has a ‘List Header’ display.  
Parameter displays  
parameter name  
parameter value  
Figure 2-6 Typical parameter display  
Parameter displays show the controller’s current settings. The layout of  
parameter displays is always the same: the upper readout shows the parameter  
name and the lower readout its value. In the above example, the parameter name  
is 1 FSL (indicating Alarm 1, full scale low), and the parameter value is 1 0 .0 .  
To change the value of a parameter  
First, select the required parameter.  
To change the value, press either  
change the value by one digit.  
or . During adjustment, single presses  
Keeping the button pressed speeds up the rate of change.  
Two seconds after releasing either button, the display blinks to show that the  
controller has accepted the new value.  
AACC 2000 Carbon  
Nov. 1, 1997  
32  
 
Marathon Monitors Inc.  
Navigation Diagram (Part A) (THE PARAMETERS THAT APPEAR DEPEND UPON  
HOW THE CONTROLLER HAS BEEN CONFIGURED)  
Home  
List  
Probe  
List  
Care  
List  
Alarm  
List  
USEr  
LI ST  
2 0 .0  
Pr o b  
CAr E  
AL  
2 0 .0  
LI ST  
LI ST  
LI ST  
n 1  
0 .1  
OP  
PF  
Ca r e  
1 - - -  
1 0 0 .0  
0 .1  
1
n 2  
0 .1  
i mP.r  
m- A  
OFFS  
2 - - -  
Pr t .r  
0 .0  
Au t o  
0 .0 1  
1
0 .0  
n 3  
0 .1  
r EF  
H- CO  
3 - - -  
t mi n  
1
1 0 .0  
1
0 .1  
n 4  
0 .1  
Pt c  
4 - - -  
Pt i  
1 0  
1
1 OFF  
n 5  
0 .1  
Pmu  
HY 1  
i mp .h  
1 0  
1
1 0 .0  
AI i n  
HY 2  
Pt r t  
1 0  
1
1 0 .0  
n 1 5  
0 .1  
HY 3  
b o t  
1
1 5 .0  
HY 4  
b o r t  
1
1 0 .0  
Lb t  
FDE  
OFF  
5 .0  
d i AG  
t 2 C  
User  
List  
n o  
0 .0  
AACC 2000 Carbon  
Nov. 1, 1997  
33  
 
Marathon Monitors Inc.  
Autotune  
List  
PID  
List  
Motor  
List  
Setpoint  
List  
At u  
Pi d  
mt r  
SP  
n
Li St  
Li St  
Li St  
Ti .2  
t u n E  
G.SP  
t m  
SSEL  
3 0 0  
OFF  
5 0 0  
3 0 .0  
SP  
1
Td .2  
Ad c  
SEt  
I n .t  
SP 1  
5 0 0  
mAn  
PI D.1  
OFF  
2 0 .0  
r ES.2  
Pb  
b Ac T  
SP 2  
0 .0  
5
OFF  
0 .0  
Hc b 2  
Ti  
mP.T  
Au t o  
3 0 0  
Au t o  
SPL  
0 .0  
Lc b 2  
Td  
U.b r  
Au t o  
6 0 .0  
DWn  
SPH  
1 0 0 .0  
r EL.2  
r ES  
1 .0 0  
0 .0  
SP2 L  
0 .0  
FF.Pb  
Hc b  
0 .0  
Au t o  
SP2 H  
1 0 0 .0  
FF.d u  
Lc b  
1 0 0 .0  
Au t o  
SPr r  
OFF  
r EL  
Hb t Y  
OFF  
Pb 2  
1 0  
AACC 2000 Carbon  
Nov. 1, 1997  
34  
 
Marathon Monitors Inc.  
Input  
List  
Output  
List  
Comms  
List  
Information  
List  
i P  
o P  
c mS  
i n F  
Li St  
Li St  
Li St  
o
c j c 1  
Fi LT  
OP.Lo  
Ad d r  
d i SP  
0
d b  
OFF  
0 .0  
1
STD  
0 .0  
L1 .1  
FLt .2  
OP.Hi  
Lo G.L  
0
Sb .OP  
1 P.1  
1 0 0 .0  
0 .0  
1 0 0 .0  
L1 .2  
PU.1 P  
OPr r  
Lo G.H  
0
OFF  
OFF  
1 0 0 .0  
L1 .3  
FLT.3  
FOP  
Lo G.A  
0
OFF  
0 .0  
5 0 .0  
PVSL  
CAL  
CYC.1  
Lo G.T  
1 P1  
FACT  
2 0 .0  
1 0 0 .0  
o f s 1  
h YS.1  
Lo G.u  
0 F  
1 .0  
0 .0  
o f s 2  
o n T.1  
r ES.L  
0
Au t o  
n o  
mv .1  
CYC.2  
mCT  
0
5 .0  
0
mv .2  
h YS.2  
w.OP  
0
1 .0  
0 .0  
mv .3  
o n T.2  
FF.OP  
0
Au t o  
0
AACC 2000 Carbon  
Nov. 1, 1997  
35  
 
Access  
List  
 
Marathon Monitors Inc.  
PARAMETER TABLES  
Name  
Description  
Home list  
Home  
OP  
Measured value and Setpoint  
% Output level  
Target setpoint (if in Manual mode )  
Auto-man select  
S P  
m- A  
r e F  
Customer defined identification number  
+ Extra parameters, if the ‘Promote’ feature has been used (see Chapter 3, Edit  
Level).  
Name  
Description  
Probe list  
Process Factor  
P r o b  
P F  
Millivolt input OFFSET  
Hydrogen or CO constant  
OF F S  
H- CO  
P Tc  
Probe Temperature  
Probe millivolts  
AUX input  
P mu  
Ai n  
Name  
Description  
Care list  
Ca r e  
Ca r e  
P r t r  
Tmi n  
P Ti  
Probe care operation selection  
MMI actual Probe recovery time  
Minimum temperature for care procedure  
Probe care cycle time  
Maximum probe impedance  
Impedance test recovery time  
Burn off time  
i mp .H  
P t r t  
b o t  
Burn off recovery time  
Final delay time  
b o r t  
F d E  
Time to next care  
t 2 C  
impedance test result  
i mp .r  
AACC 2000 Carbon  
Nov. 1, 1997  
37  
 
Marathon Monitors Inc.  
Name  
Description  
User list  
user parameter #1  
user parameter #2  
user parameter #3  
user parameter #4  
user parameter #5 - 15  
Us e r  
n 1  
n 2  
n 3  
n 4  
n 5 - 1 5  
Name Description  
Alarm list  
AL  
1 -  
Alarm 1 setpoint value  
Alarm 2 setpoint value  
Alarm 3 setpoint value  
Alarm 4 setpoint value  
-
-
-
-
-
-
-
-
2 -  
3 -  
4 -  
In place of dashes, the last three characters indicate the alarm type. See alarm types  
table:  
Alarm 1 Hysteresis (display units)  
Alarm 2 Hysteresis (display units)  
Alarm 3 Hysteresis (display units)  
Alarm 4 Hysteresis (display units)  
Loop Break Time in minutes  
Enable Diagnostic alarms ‘n o ’ / ‘YES’  
Alarm types table  
HY 1  
HY 2  
HY 3  
HY 4  
Lb t  
d i AG  
PV Full scale low alarm  
- F S L  
- F S H  
- d Ev  
- d Hi  
- d Lo  
- LCr  
- HCr  
- F L2  
- F H2  
- LOP  
- HOP  
- LS P  
- HS P  
4 r At  
PV Full scale high alarm  
PV Deviation band alarm  
PV Deviation high alarm  
PV Deviation low alarm  
Load Current low alarm  
Load Current high alarm  
Input 2 Full Scale low alarm  
Input 2 Full Scale high alarm  
Working Output low alarm  
Working Output high alarm  
Working Setpoint low alarm  
Working Setpoint high alarm  
Rate of change alarm (AL 4 only)  
Autotune list  
At u n  
AACC 2000 Carbon  
Nov. 1, 1997  
38  
 
Marathon Monitors Inc.  
One-shot autotune enable  
t u n E  
d r A  
d r A.t  
Ad c  
Adaptive tune enable  
Adaptive tune trigger level in display units. Range = 1 to 9999  
Automatic Droop Compensation (PD control only)  
AACC 2000 Carbon  
Nov. 1, 1997  
39  
 
Marathon Monitors Inc.  
Name Description  
PID list  
P i d  
If Gain Scheduling has been enabled (see Chapter 4), this parameter sets  
G.S P  
the PV below which ‘Pi d .1 ’ is active and above which ‘Pi d .2 ’ is active.  
S Et  
P b  
Pi d .1 ’ or ‘Pi d .2 ’ selected  
Proportional Band  
(in display units)  
(SEt 1 )  
t i  
Integral Time in secs(SEt 1 )  
Derivative Time in secs  
Manual Reset (%)  
Cutback High  
t d  
(SEt 1 )  
r ES  
Hc b  
Lc b  
(SEt 1 )  
(SEt 1 )  
Cutback Low  
(SEt 1 )  
r EL.C Relative Cool Gain  
(SEt 1 )  
P b 2  
Proportional Band  
Integral Time in secs(SEt 2 )  
Derivative Time in secs  
Manual Reset (%)  
Cutback High  
(SEt 2 )  
t i 2  
t d 2  
(SEt 2 )  
r ES .2  
Hc b 2  
Lc b 2  
r EL.2  
(SEt 2 )  
(SEt 2 )  
Cutback Low  
(SEt 2 )  
Relative Cool Gain  
(SEt 2 )  
The following three parameters are used for cascade control. If this facility is not  
being used, then they can be ignored.  
SP, or PV, feedforward propband  
Feedforward trim %  
F F .P b  
F F .t r  
F F .d v  
PID feedforward limits ± %  
Motor list - see Table 4-3  
Valve travel time in seconds  
Valve inertia time in secs  
mt r  
t m  
I n .t  
b Ac .t  
mp .t  
U.b r  
Valve backlash time in secs  
Minimum ON time of output pulse  
Valve sensor break strategy  
AACC 2000 Carbon  
Nov. 1, 1997  
40  
 
Marathon Monitors Inc.  
Name Description  
Setpoint list  
S P  
SSEL  
SP 1  
SP 2  
SP L  
SP H  
SP2 .L  
SP2 .H  
SPr r  
Hb .t y  
Select SP 1 to SP1 6 , depending on configuration  
Setpoint one value  
Setpoint two value  
Setpoint 1 low limit  
Setpoint 1 high limit  
Setpoint 2 low limit  
Setpoint 2 high limit  
Setpoint Rate Limit  
Holdback Type for setpoint rate limit (OFF, Lo , Hi , or b An d )  
Input list  
i P  
IP1 filter time constant (0.0 - 999.9 seconds).  
IP2 filter time constant (0.0 - 999.9 seconds).  
Selects ‘i p .1 ’ or ‘i p .2 ’  
DC input Filter Time Constant  
User Calibration Enable  
simple offset  
Fi Lt  
FLt .2  
PV.i p  
FLt .3  
CAL  
OFS.1  
OFS.2  
mV.1  
PV2 simple offset  
ADC Converter millivolts  
ADC Converter millivolts PV2  
Second PV millivolts input  
IP1 cold junction temp. reading  
IP2 cold junction temp. reading  
IP1 linearised value  
mV.2  
mV.3  
CJ C.1  
CJ C.2  
Li .1  
IP2 linearised value  
Li .2  
DC Input 3  
Li .3  
Current Input or Inputs used for PV  
PV.SL  
AACC 2000 Carbon  
Nov. 1, 1997  
41  
 
Marathon Monitors Inc.  
Name Description  
Output list  
Does not appear if Motorised Valve control configured.  
o P  
Low power limit (%)  
High power limit (%)  
Output Rate Limit (% per sec)  
Forced output level (%)  
OP.Lo  
OP.Hi  
OPr r  
FOP  
Heat cycle time (0.2S to 999.9S)  
Heat hysteresis (display units)  
Heat output min. on-time (secs)  
Auto (0.05S), or 0.1 - 999.9S  
Cool cycle time (0.2S to 999.9S)  
CYC.H  
h YS.H  
o n t .H  
CYC.C  
h YS.C  
o n t .C  
Cool hysteresis (display units)  
Cool output min. on-time (secs)  
Auto (0.05S), or 0.1 - 999.9S  
Heat/cool deadband (display units)  
HC.d b  
Sb .OP  
Sensor Break Output Power (%)  
Comms list  
c mS  
Communications Address  
Ad d r  
Information list  
i n F o  
Configure lower readout of Home display to show:  
d i SP  
VPo S  
St d  
AmPS  
OP  
Valve position  
Standard - display setpoint  
Load current in amps  
Output  
St a t  
Pr G.t  
Program status  
Program time remaining in  
Process value 2  
hours  
Li  
2
r At  
Ratio setpoint  
Pr G  
r SP  
Selected program number  
Remote setpoint  
PV minimum  
PV maximum  
PV mean value  
Time PV above Threshold level  
PV Threshold for Timer Log  
Lo G.L  
Lo G.H  
Lo G.A  
Lo g .t  
Lo g .v  
AACC 2000 Carbon  
Nov. 1, 1997  
42  
 
Marathon Monitors Inc.  
Name Description  
Information list - continued  
Logging Reset - ‘YES/n o ’  
i n F o  
r ES.L  
The following set of parameters is for diagnostic purposes.  
Processor utilisation factor  
Working output  
mCt  
w.OP  
FF.OP  
VO  
P OP  
I OP  
d OP  
Feedforward component of output  
PID output to motorised valve  
Proportional component of output  
Integral component of output  
Derivative component of output  
Access List  
ACCS  
Access password  
c o d E  
Go t o Goto level - OPEr , Fu LL, Ed i t or c o n F  
Configuration password  
Co n F  
AACC 2000 Carbon  
Nov. 1, 1997  
43  
 
Marathon Monitors Inc.  
Alarms  
Alarm annunciation  
Alarms are flashed as messages in the Home display. A new alarm is displayed as a  
double flash followed by a pause, old (acknowledged) alarms as a single flash followed  
by a pause. If there is more than one alarm condition, the display cycles through all the  
relevant alarm messages. Table 2-1 and Table 2-2 list all of the possible alarm messages  
and their meanings.  
Alarm acknowledgement and resetting  
Pressing both  
and  
at the same time will acknowledge any new alarms and reset  
any latched alarms.  
Alarm modes  
Alarms will have been set up to operate in one of several modes, either:  
·
·
·
Non-latching, which means that the alarm will reset automatically when the Process  
Value is no longer in the alarm condition.  
Latching, which means that the alarm message will continue to flash even if the  
alarm condition no longer exists and will only clear when reset.  
Blocking, which means that the alarm will only become active after it has first  
entered a safe state on power-up.  
Alarm types  
There are two types of alarm: Process alarms and Diagnostic alarms.  
Process alarms  
These warn that there is a problem with the process which the controller is trying to  
control.  
Alarm  
Display  
Alarm  
Display  
What it means  
What it means  
Input 2 Full Scale Low  
alarm  
PV Full Scale Low alarm  
PV Full Scale High alarm  
PV Deviation Band alarm  
PV Deviation High alarm  
PV Deviation Low alarm  
Load Current Low alarm  
_FL2 *  
_FH2 *  
_LOP*  
_HOP*  
_LSP*  
_FSL*  
_FSH*  
_d Ev *  
_d Hi *  
_d Lo *  
_LCr *  
p .FLt  
Input 2 Full Scale High  
alarm  
Working Output Low  
alarm  
Working Output High  
alarm  
Working Setpoint Low  
alarm  
Probe impedance test  
fault.  
* In place of the dash, the first character will indicate the alarm number.  
Table 2-1 Process alarms  
AACC 2000 Carbon  
Nov. 1, 1997  
44  
 
Marathon Monitors Inc.  
Diagnostic alarms  
These indicate that a fault exists in either the controller or the connected devices.  
Display  
shows  
What it means  
What to do about it  
Electrically Erasable Memory  
Error:  
The value of an operator, or  
configuration, parameter has  
been corrupted.  
This fault will automatically take you into  
Configuration level. Check all of the  
configuration parameters before returning  
to Operator level. Once in Operator level,  
check all of the operator parameters  
before resuming normal operation. If the  
fault persists, or occurs frequently,  
contact MMI Controls.  
EE.Er  
Sensor Break:  
Check that the sensor is correctly  
connected.  
S .b r  
Input sensor is unreliable or  
the input signal is out of  
range.  
Loop Break  
The feedback loop is open  
circuit.  
Check that the heating and cooling  
circuits are working properly.  
L.b r  
Hardware error  
Check that the correct modules are fitted.  
Hw.Er  
Indication that a module is of  
the wrong type, missing, or  
faulty.  
No I/O  
None of the expected I/O  
modules is fitted.  
This error message normally occurs  
when pre-configuring a controller without  
installing any of the required I/O modules.  
n o .i o  
r mt .F  
Remote input failure. the  
remote DC input, is open or  
short circuit  
Check for open, or short circuit wiring on  
the remote DC input.  
Out of range low reading  
Out of range high reading  
Error 1: ROM self-test fail  
Error 2: RAM self-test fail  
Error 3: Watchdog fail  
Check the value of the input.  
Check the value of the input.  
Return the controller for repair.  
Return the controller for repair.  
Return the controller for repair.  
LLLL  
HHHH  
Er r 1  
Er r 2  
Er r 3  
Er r 4  
Error 4: Keyboard failure  
Stuck button, or a button was  
pressed during power up.  
Switch the power off and then on, without  
touching any of the controller buttons.  
Error 5: Faulty internal  
Check printed circuit board  
Er r 5  
interconnections. If the fault cannot be  
cleared, return the controller for repair.  
communications.  
AACC 2000 Carbon  
Nov. 1, 1997  
45  
 
Marathon Monitors Inc.  
Table 2-2b Diagnostic alarms  
AACC 2000 Carbon  
Nov. 1, 1997  
46  
 
Marathon Monitors Inc.  
ACCESS LEVELS  
This chapter describes the different levels of access to the operating parameters within  
the controller.  
There are three topics:  
·
·
·
THE DIFFERENT ACCESS LEVELS  
SELECTING AN ACCESS LEVEL  
EDIT LEVEL  
THE DIFFERENT ACCESS LEVELS  
There are four access levels:  
·
·
·
Operator level, which you will normally use to operate the controller.  
Full level, which is used to commission the controller.  
Edit level, which is used to set up the parameters that you want an operator to be able  
to see and adjust when in Operator level.  
·
Configuration level, which is used to set up the fundamental characteristics of the  
controller.  
Access  
level  
Display What you can do  
shows  
Password  
Protection  
Operator  
In this level, operators can view and adjust the  
value of parameters defined in Edit level (see  
below).  
No  
Yes  
Yes  
OPEr  
Fu LL  
Ed i t  
Full  
In this level, all the parameters relevant to a  
particular configuration are visible. All alterable  
parameters may be adjusted.  
Edit  
In this level, you can determine which parameters  
an operator is able to view and adjust in Operator  
level. You can hide, or reveal, complete lists,  
individual parameters within each list and you can  
make parameters read-only or alterable. (See Edit  
level at the end of this chapter).  
Configuration  
This special level allows access to set up the  
fundamental characteristics of the controller.  
Yes  
c o n F  
Figure 3-1 Access levels  
AACC 2000 Carbon  
Nov. 1, 1997  
47  
 
Marathon Monitors Inc.  
SELECTING AN ACCESS LEVEL  
Access to Full, Edit or Configuration levels is protected by a password to prevent  
unauthorised access.  
If you need to change the password, see Chapter 6, Configuration.  
Access list header  
Press  
until you reach the access list header  
ACCS.  
Press  
Password entry  
The password is entered from the c o d Edisplay.  
Enter the password using  
or  
. Once the  
correct password has been entered, there is a two  
second delay after which the lower readout will  
change to show PASSindicating that access is  
now unlocked.  
The pass number is set to 1 when the controller is  
shipped from the factory.  
Note; A special case exists if the password has  
been set to 0 . In this case access will be  
permanently unlocked and the lower readout will  
always show PASS’.  
Press  
to proceed to the Go t o page.  
(If an incorrect password has been entered and the  
controller is still ‘locked’ then pressing  
returns  
you to the ACCSlist header.)  
Access to Read-only Configuration  
From this display, pressing  
and  
together will take you into Read-Only  
Configuration without entering a password.  
This will allow you to view all of the  
configuration parameters, but not adjust them.  
If no button is pressed for ten seconds, you  
will be returned to the Home display.  
Alternatively, pressing  
and  
together  
takes you immediately back to the Home  
display  
AACC 2000 Carbon  
Nov. 1, 1997  
48  
 
Marathon Monitors Inc.  
Level selection  
The Go t o display allows you to select the  
required access level.  
Use  
and  
to select from the following  
display codes:  
OPEr : Operator level  
Fu LL: Full level  
Ed i t : Edit level  
c o n F: Configuration level  
Press  
If you selected either OPEr , Fu LLor  
Ed i t level you will be returned to the  
ACCSlist header in the level that you  
chose. If you selected c o n F, you will get  
a display showing Co n Fin the upper  
readout (see below).  
Configuration password  
When the Co n Fdisplay appears, you must  
enter the Configuration password in order to  
gain access to this level. Do this by  
repeating the password entry procedure  
described in the previous section.  
The configuration password is set to 2 ’  
when the controller is shipped from the  
factory. If you need to change the  
configuration password, see Chapter 6,  
Configuration.  
Alternative path if  
c o n F’ selected  
Press  
Configuration level  
The first display of configuration is shown.  
See Chapter 6, Configuration, for details of  
the configuration parameters.  
For instructions on leaving configuration  
level, see Chapter 6, Configuration.  
AACC 2000 Carbon  
Nov. 1, 1997  
49  
 
Marathon Monitors Inc.  
Returning to Operator Level  
To return to operator level from either Fu LLor Ed i t level, repeat entry of the  
password and select OPEr on the Go t o display.  
In Ed i t level, the controller will automatically return to operator level if no button is  
pressed for 45 seconds.  
Edit level  
Edit level is used to set which parameters you can view and adjust in Operator level. It  
also gives access to the ‘Promote’ feature, which allows you to select and add (‘Promote’)  
up to twelve parameters into the Home display list, thereby giving simple access to  
commonly used parameters.  
Setting operator access to a parameter  
First you must select Ed i t level, as shown on the previous page.  
Once in Ed i t level, you select a list, or a parameter within a list, in the same way as  
you would in Operator, or Full, level - that is to say, you move from list header to list  
header by pressing  
, and from parameter to parameter within each list using  
.
However, in Edit level what is displayed is not the value of a selected parameter, but a  
code representing that parameter’s availability in Operator level.  
When you have selected the required parameter, use  
availability in Operator level.  
and  
buttons to set its  
There are four codes:  
ALt r Makes a parameter alterable in Operator level.  
P r O  
Promotes a parameter into the Home display list.  
r EAd Makes a parameter, or list header, read-only (it can be viewed but not altered).  
HI d E Hides a parameter, or list header.  
For example:  
The parameter selected is Alarm 2, Full Scale Low  
It will be alterable in Operator level  
Hiding or revealing a complete list  
To hide a complete list of parameters, all you have to do is hide the list header. If a list  
header is selected, only two selections are available: r EAd and HI d E.  
(It is not possible to hide the ACCSlist, which always displays the code: Li St .)  
AACC 2000 Carbon  
Nov. 1, 1997  
50  
 
Marathon Monitors Inc.  
Promoting a parameter  
Scroll through the lists to the required parameter and choose the Pr Ocode. The  
parameter is then automatically added (promoted) into the Home display list. (The  
parameter will also be accessible, as normal, from the standard lists.) A maximum of  
twelve parameters can be promoted. Promoted parameters are automatically ‘alterable’.  
AACC 2000 Carbon  
Nov. 1, 1997  
51  
 
Marathon Monitors Inc.  
This sheet intentionally left blank  
AACC 2000 Carbon  
Nov. 1, 1997  
52  
 
Marathon Monitors Inc.  
TUNING  
Before tuning, please read Chapter 2, Operation, to learn how to select and change a  
parameter.  
This chapter has five topics:  
·
·
·
·
·
WHAT IS TUNING?  
AUTOMATIC TUNING  
MANUAL TUNING  
COMMISSIONING OF MOTORISED VALVE CONTROLLERS  
GAIN SCHEDULING  
WHAT IS TUNING?  
In tuning, you match the characteristics of the controller to those of the process being  
controlled in order to obtain good control. Good control means:  
·
·
·
Stable, ‘straight-line’ control of the process variable at setpoint without fluctuation  
No overshoot, or undershoot, of the process variable setpoint  
Quick response to deviations from the setpoint caused by external disturbances,  
thereby rapidly restoring the process variable to the setpoint value.  
Tuning involves calculating and setting the value of the parameters listed in Table 4-1.  
These parameters appear in the Pi d list.  
Parameter  
Code  
Meaning or Function  
Proportional  
band  
The bandwidth, in display units, over which the output power is  
proportioned between minimum and maximum.  
Pb  
Integral time  
Derivative time  
High Cutback  
Determines the time taken by the controller to remove steady-  
state error signals.  
t i  
Determines how strongly the controller will react to the rate-of-  
change of the measured value.  
t d  
The number of display units, above setpoint, at which the  
controller will increase the output power, in order to prevent  
undershoot on cool down.  
Hc b  
Low cutback  
The number of display units, below setpoint, at which the  
controller will cutback the output power, in order to prevent  
overshoot on heat up.  
Lc b  
r EL  
Relative cool  
gain  
Only present if cooling has been configured and a module is  
fitted. Sets the cooling proportional band, which equals the Pb  
value divided by the r EL value.  
AACC 2000 Carbon  
Nov. 1, 1997  
53  
 
Marathon Monitors Inc.  
AUTOMATIC TUNING  
Two automatic tuning methods are provided in the AACC 2000:  
·
A one-shot tuner, which automatically sets up the initial values of the parameters  
listed in Table 4-1 on the previous page.  
·
Adaptive tuning, which continuously monitors the error from setpoint and modifies  
the PID values, if necessary.  
One-shot Tuning  
The ‘one-shot’ tuner works by switching the output on and off to induce an oscillation in  
the measured value. From the amplitude and period of the oscillation, it calculates the  
tuning parameter values.  
If the process cannot tolerate full heating or cooling being applied during tuning, then the  
level of heating or cooling can be restricted by setting the heating and cooling power  
limits in the o Plist. However, the measured value must oscillate to some degree for the  
tuner to be able to calculate values.  
A One-shot Tune can be performed at any time, but normally it is performed only once  
during the initial commissioning of the process. However, if the process under control  
subsequently becomes unstable (because its characteristics have changed), you can re-  
tune again for the new conditions.  
It is best to start tuning with the process at ambient process variable. This allows the  
tuner to calculate more accurately the low cutback and high cutback values which restrict  
the amount of overshoot, or undershoot.  
How to tune  
1. Set the setpoint to the value at which you will normally operate the process.  
2. In the At u n list, select t u n Eand set it to o n ’.  
3. Press the Page and Scroll buttons together to return to the Home display. The display  
will flash t u n Eto indicate that tuning is in progress.  
4. The controller induces an oscillation in the process variable by first turning the  
heating on, and then off. The first cycle is not complete until the measured value has  
reached the required setpoint.  
5. After two cycles of oscillation the tuning is completed and the tuner switches itself  
off.  
6. The controller then calculates the tuning parameters listed in Table 4-1 and resumes  
normal control action.  
If you want ‘Proportional only’, ‘PD’, or ‘PI’ control, you should set the t i or t d ’  
parameters to OFF before commencing the tuning cycle. The tuner will leave them off  
and will not calculate a value for them.  
AACC 2000 Carbon  
Nov. 1, 1997  
54  
 
Marathon Monitors Inc.  
Typical automatic tuning cycle  
Process Variable  
Setpoint  
Time  
Calculation of the cutback values  
Low cutback and High cutback are values that restrict the amount of overshoot, or  
undershoot, that occurs during large step changes in process variable (for example, under  
start-up conditions).  
If either low cutback, or high cutback, is set to Au t o the values are fixed at three times  
the proportional band, and are not changed during automatic tuning.  
Adaptive tune  
Adaptive tuning is a background algorithm, which continuously monitors the error from  
setpoint and analyses the control response during process disturbances. If the algorithm  
recognises an oscillatory, or under-damped, response it recalculates the Pb , t i and t d  
values.  
Adaptive tune is triggered whenever the error from setpoint exceeds a trigger level. This  
trigger level is set in the parameter d r A.t , which is found in the Autotune list. The  
value is in display units. It is automatically set by the controller, but can also be  
manually  
re-adjusted.  
Adaptive tune should be used with:  
1. Processes whose characteristics change as a result of changes in the load, or setpoint.  
2. Processes that cannot tolerate the oscillation induced by a One-shot tune.  
Adaptive tune should not be used:  
1. Where the process is subjected to regular external disturbances that could mislead the  
adaptive tuner.  
2. On highly interactive multiloop applications. However, moderately interactive loops,  
such as multi-zone extruders, should not give a problem.  
AACC 2000 Carbon  
Nov. 1, 1997  
55  
 
Marathon Monitors Inc.  
MANUAL TUNING  
If for any reason automatic tuning gives unsatisfactory results, you can tune the controller  
manually. There are a number of standard methods for manual tuning. The one  
described here is the Ziegler-Nichols method.  
With the process at its normal running process variable:  
1. Set the Integral Time t i and the Derivative Time t d to OFF.  
2. Set High Cutback and Low Cutback, Hc b and Lc b , to Au t o ’.  
3. Ignore the fact that the process variable may not settle precisely at the setpoint.  
4. If the process variable is stable, reduce the proportional band Pb so that the process  
variable just starts to oscillate. If the process variable is already oscillating, increase  
the proportional band until it just stops oscillating. Allow enough time between each  
adjustment for the loop to stabilise. Make a note of the proportional band value ‘B’  
and the period of oscillation ‘T’.  
5. Set the Pb, ti, td parameter values according to the calculations given in Table 4-2.  
Type of control  
Proportional  
band ‘Pb’  
Integral time  
‘ti’  
Derivative time  
‘td’  
Proportional only  
P + I control  
2xB  
OFF  
OFF  
2.2xB  
0.8xT  
OFF  
P + I + D control  
1.7xB  
0.5xT  
0.12xT  
Table 4-2 Tuning values  
AACC 2000 Carbon  
Nov. 1, 1997  
56  
 
Marathon Monitors Inc.  
Setting the cutback values  
The above procedure sets up the parameters for optimum steady state control. If  
unacceptable levels of overshoot or undershoot occur during start-up, or for large step  
changes in process variable, then manually set the cutback parameters Lc b and Hc b .  
Proceed as follows:  
1. Set the low and high cutback values to three proportional bandwidths (that is to say,  
Lcb = Hcb = 3 x Pb).  
2. Note the level of overshoot, or undershoot, that occurs for large atmosphere changes  
(see the diagrams below).  
In example (a) increase Lc b by the overshoot value. In example (b) reduce Lc b by  
the undershoot value.  
Example (a)  
Atmosphere  
Setpoint  
Overshoot  
Example (b)  
Atmosphere  
Setpoint  
Undershoot  
Time  
Where the atmosphere approaches setpoint from above, you can set Hc b in a similar  
manner.  
AACC 2000 Carbon  
Nov. 1, 1997  
57  
 
Marathon Monitors Inc.  
Integral action and manual reset  
In a full three-term controller (that is, a PID controller), the integral term ‘ti’  
automatically removes steady state errors from the setpoint. If the controller is set up to  
work in two-term mode (that is, PD mode), the integral term will be set to ‘OFF’. Under  
these conditions the measured value may not settle precisely at setpoint. When the  
integral term is set to ‘OFF’ the parameter manual reset (code r ES) appears in the  
Pi d Li St in Fu LLlevel. This parameter represents the value of the power output  
that will be delivered when the error is zero. You must set this value manually in order  
to remove the steady state error.  
Automatic droop compensation (Adc)  
The steady state error from the setpoint, which occurs when the integral term is set to  
‘OFF’ is sometimes referred to as ‘droop’. Ad c automatically calculates the manual  
reset value in order to remove this droop. To use this facility, you must first allow the  
process variable to stabilise. Then, in the autotune parameter list, you must set Ad c to  
o n . The controller will then calculate a new value for manual reset, and switch Ad c ’  
to OFF.  
Ad c can be repeated as often as you require, but between each adjustment you must  
allow time for the process variable to stabilise.  
AACC 2000 Carbon  
Nov. 1, 1997  
58  
 
Marathon Monitors Inc.  
Motorized valve control  
The AACC 2000 can be configured for motorised valve control as an alternative to the  
standard PID control algorithm. This algorithm is designed specifically for positioning  
motorised valves.  
These are ordered pre-configured as Model numbers:  
·
·
·
·
2000/VC motorised valve controllers  
2000/VP motorised valve controllers with a single setpoint programmer  
2000/V4 motorised valve controllers storing four setpoint programs.  
2000/VM motorised valve controllers storing twenty setpoint programs.  
Figure 1-11 in Chapter 1 shows how to connect a motorised valve controller. The control  
is performed by delivering open, or close, pulses in response to the control demand  
signal.  
The motorised valve algorithm can operate in one of three ways:  
1. The so-called boundless mode, which does not require a position feedback  
potentiometer for control purposes; although one can be connected and used purely to  
display the valve’s position.  
2. Bounded, (or position), control mode, which requires a feedback potentiometer.  
This is closed-loop control determined by the valve’s position.  
The desired control mode is selected in the ‘i n s t ’ list in configuration level.  
The following parameter list will appear in the navigation diagram shown in Chapter 2, if  
your controller is configured for motorised valve control.  
Name  
Description  
Motor list  
Values  
Max  
Min  
Default  
mt r  
Valve travel time in seconds.  
This is the time taken for the valve to travel  
from its fully closed position to its fully open  
position.  
t m  
0 .1  
2 4 0 .0  
3 0 .0  
Valve inertia time in seconds.  
This is the time taken for the valve to stop  
moving after the output pulse is switched off.  
I n .t  
OFF  
OFF  
2 0 .0  
2 0 .0  
OFF  
OFF  
Valve backlash time in seconds.  
b Ac .t  
This is the minimum on-time required to  
reverse the direction of the valve. i.e. the  
time to overcome the mechanical backlash.  
Output pulse minimum on-time, in seconds.  
Valve sensor break strategy.  
mp .t  
U.b r  
Au t o  
1 0 0 .0  
Au t o  
d wn  
r ESt , u P, d wn  
AACC 2000 Carbon  
Nov. 1, 1997  
59  
 
Marathon Monitors Inc.  
COMMISSIONING THE MOTORISED VALVE CONTROLLER  
The commissioning procedure is the same for both bounded and boundless control modes,  
except in bounded mode you must first calibrate the position feedback potentiometer, as  
described in the section below.  
Proceed as follows:  
1. Measure the time taken for the valve to be raised from its fully closed to its fully  
open position and enter this as the value in seconds into the t mparameter.  
2. Set all the other parameters to the default values shown in Table 4-3.  
The controller can then be tuned using any of the automatic, or manual, tuning procedures  
described earlier in this chapter. As before, the tuning process, either automatic or  
manual, involves setting the values of the parameters in Table 4-1. The only difference  
with boundless control is that the derivative term t d ’, although present, will have no  
effect.  
Adjusting the minimum on-time ‘mp .t ’  
The default value of 0.2 seconds is satisfactory for most processes. If, however, after  
tuning the process, the valve activity is excessively high, with constant oscillation  
between raise and lower pulses, the minimum on-time can be increased.  
The minimum on-time determines how accurately the valve can be positioned and  
therefore the control accuracy. The shorter the time, the more precise the control.  
However, if the time is set too short, process noise will cause an excessively busy valve.  
Inertia and backlash settings  
The default values are satisfactory for most processes, i.e. ‘OFF’.  
Inertia is the time taken for the valve to stop after the output pulse is turned off. If this  
causes a control problem, the inertia time needs to be determined and then entered into  
the parameter, ‘I n .t ’. The inertia time is subtracted from the raise and lower output  
pulse times, so that the valve moves the correct distance for each pulse.  
Backlash is the output pulse time required to reverse the direction of the valve, i.e. the  
time taken to overcome the mechanical backlash of the linkages. If the backlash is  
sufficient to cause a control problem, then the backlash time needs to be determined and  
then entered into the parameter, ‘b a c .t ’.  
The above two values are not part of the automatic tuning procedure and must be entered  
manually.  
CALIBRATING THE POSITION FEEDBACK POTENTIOMETER  
Before proceeding with the feedback potentiometer calibration, you should ensure, in  
configuration level, that module position 2 (2 a ), or 3 (3 a ), has its ‘i d ’ indicating  
Po t .i ’, (meaning Potentiometer Input). Continue to scroll down the module  
AACC 2000 Carbon  
Nov. 1, 1997  
60  
 
Marathon Monitors Inc.  
configuration list. f u n c ’ should be set to ‘Vp o s ’, ‘VAL.L’ must be set to ‘0 ’ and  
VAL.H’ to ‘1 0 0 ’.  
Exit from configuration and you are now ready to calibrate the position feedback  
potentiometer. Proceed as follows.  
1. In Operator level, press the AUTO/MAN button to put the controller in Manual mode.  
2. Drive the valve to its fully open position using  
.
3. Press  
4. Press  
5. Press  
6. Press  
7. Press  
until you get to ‘i p - Li s t ’.  
to get to ‘PCAL- OFF’.  
or  
and the upper readout indicates ‘Po t ’.  
or to get to ‘Po t - 3 A.Hi ’. (Assuming that the Potentiometer Input  
to turn ‘PCAL’ to ‘o n ’.  
Module is in module position 3.)  
8. Press to go to ‘GO- n o ’.  
9. Press or to see ‘GO- YES’, which starts the calibration procedure.  
10. Calibration is complete when the display returns to ‘GO- n o ’.  
11. Press and together to return directly to the Operator level.  
12. The controller should still be in Manual mode.  
13. Drive the valve to its fully closed position using  
.
14. Press  
15. Press  
16. Press  
17. Press  
18. Press  
19. Press  
20. Press  
until you get to ‘i p - Li s t ’.  
to get to ‘PCAL- OFF’.  
or  
and the upper readout indicates ‘Po t ’.  
or to get to ‘Po t - 3 A.Lo ’  
to go to ‘GO- n o ’.  
or to see ‘GO- YES’, which starts the calibration procedure.  
to turn ‘PCAL’ to ‘o n ’.  
21. Calibration is complete when the display returns to ‘GO- n o ’.  
22. Press and together to return directly to the Operator level.  
23. Press the AUTO/MAN button to place the controller in AUTO and the calibration of  
the position feedback potentiometer is now complete.  
AACC 2000 Carbon  
Nov. 1, 1997  
61  
 
Marathon Monitors Inc.  
Gain scheduling  
Gain scheduling is the automatic transfer of control between one set of PID values and  
another. In the case of the AACC 2000 controllers, this is done at a presettable process  
value. It is used for the more difficult to control processes which exhibit large changes  
in their response time or sensitivity at, for example, high and low process variables, or  
when heating or cooling.  
The AACC 2000 has two sets of PID values. You can select the active set from either a  
digital input, or from a parameter in the PID list, or you can transfer automatically in gain  
scheduling mode. The transfer is bumpless and will not disturb the process being  
controlled.  
To use gain scheduling, follow the steps below:  
Step1: Enable in configuration level  
Gain scheduling must first be enabled in  
Gs c h  
Configuration level. Goto the I n s t Co n f list,  
select the parameter Gs c h , and set it to YES.  
YES  
Step 2: Set the transfer point  
G.SP  
Once gain scheduling has been enabled, the  
parameter G.SP will appear at the top of the  
3 5 0  
Pi d list in Fu LL access level. This sets the  
value at which transfer occurs. PID1 will be  
active when the process value is below this  
setting and PID2 when the process value is  
above it. The best point of transfer depends on  
the characteristics of the process. Set a value  
between the control regions that exhibit the  
greatest change  
Step 3: Tuning  
You must now set up the two sets of PID values. The values can be  
manually set, or automatically tuned as described earlier in this chapter.  
When tuning automatically you must tune twice, once above the switching  
point G.SP and again below the switching point. When tuning, if the  
process value is below the transfer point G.SP the calculated values will  
automatically be inserted into PID1 set and if the process value is above  
G.SP, the calculated values will automatically be inserted into PID2 set.  
AACC 2000 Carbon  
Nov. 1, 1997  
62  
 
Marathon Monitors Inc.  
CONFIGURATION  
This chapter consists of six topics:  
·
·
·
·
·
·
SELECTING CONFIGURATION LEVEL  
LEAVING CONFIGURATION LEVEL  
SELECTING A CONFIGURATION PARAMETER  
CHANGING THE PASSWORDS  
NAVIGATION DIAGRAM  
CONFIGURATION PARAMETER TABLES.  
In configuration level you set up the fundamental characteristics of the controller.  
These are:  
·
·
·
·
·
·
·
·
·
·
·
The type of control (e.g. reverse or direct acting)  
The Input type and range  
The Setpoint configuration  
The Alarms configuration  
The Programmer configuration  
The Digital input configuration  
The Alarm Relay configuration  
The Communications configuration  
The Modules 1, 2 & 3 configuration  
Calibration  
The Passwords.  
WARNING  
Configuration is protected by a password and should only be carried out by a  
qualified person, authorised to do so. Incorrect configuration could result in  
damage to the process being controlled and/or personal injury. It is the  
responsibility of the person commissioning the process to ensure that the  
configuration is correct.  
AACC 2000 Carbon  
Nov. 1, 1997  
63  
 
Marathon Monitors Inc.  
Selecting configuration level  
There are two alternative methods of selecting Configuration level:  
·
If you have already powered up, then follow the access instructions given in Chapter  
3, Access levels.  
Alternatively, press  
and  
together when powering up the controller. This will  
take you directly to the Co n Fpassword display.  
Password entry  
When the Co n Fdisplay appears, you must enter the  
Configuration password (which is a number) in order to gain  
access to Configuration level.  
Enter the password using the  
or  
buttons.  
The configuration password is set to 2 when the controller  
is shipped from the factory.  
Once the correct password has been entered, there is a two  
second delay, after which the lower readout will change to  
PASSindicating that access is now unlocked.  
Note: A special case exists if the password has been set to  
0 . In this situation, access is permanently unlocked and the  
lower readout will always show PASS’.  
Press  
to enter configuration.  
(If an incorrect password has been entered and the controller  
is still ‘locked’ then pressing at this point will take you  
to the Ex i t display with n o in the lower readout. Simply  
press to return to the Co n Fdisplay.)  
You will obtain the first display of configuration.  
AACC 2000 Carbon  
Nov. 1, 1997  
64  
 
Marathon Monitors Inc.  
LEAVING CONFIGURATION LEVEL  
To leave the Configuration level and return to Operator level Press  
until the  
Ex i t display appears.  
Alternatively, pressing  
and  
Use  
together will take you directly to the Ex i t display  
or to select YES. After a two-  
second delay, the display will blank and revert to  
the Home display in Operator level.  
SELECTING A CONFIGURATION PARAMETER  
The configuration parameters are arranged in lists as shown in the navigation diagram  
in  
Figure 6.1.  
To step through the list headers, press the Page  
button.  
To step through the parameters within a particular list press the Scroll  
When you reach the end of the list you will return to the list header.  
button.  
button.  
You can return directly to the list header at any time by pressing the Page  
Parameter names  
Each box in the navigation diagram shows the display for a particular parameter. The  
upper readout shows the name of the parameter and the lower readout its value. For a  
definition of each parameter, see the Configuration Parameter Tables at the end of this  
chapter. To change the value of a selected parameter, use the  
and  
buttons.  
The navigation diagram shows all the lists headers and parameters that can, potentially,  
be present in the controller. In practice, those actually present will vary according to  
the particular configuration choices you make.  
Changing the passwords  
There are TWO passwords. These are stored in the Password configuration list and can  
be selected and changed in the same manner as any other configuration parameter.  
The password names are:  
ACC.Pwhich protects access to Full level and Edit level  
c n F.Pwhich protects access to Configuration level.  
AACC 2000 Carbon  
Nov. 1, 1997  
65  
 
Marathon Monitors Inc.  
NAVIGATION DIAGRAM (PART A)  
Instrument  
Process  
Input Config  
List  
Setpoint  
Config  
Alarms  
Config  
Value List  
List  
PU  
SP  
AL  
i n ST  
i P  
Co n F  
Co n F  
Co n F  
Li St  
Co n F  
u n i T  
n SP  
AL1  
2 r Fn  
i n PT  
°C  
2
FSH  
CAr B  
h t c  
Fwd .t  
n o n e  
r mTr  
LTc h  
CTr L  
CJ C  
d Ec .p  
OFF  
o n  
Pi d  
Au t o  
n n n n  
Sb r T  
SB.OP  
m.Tr  
b Lo c  
TYPE  
i mP  
r n GL  
OFF  
o n  
c t r L  
Au t o  
0
FOP  
n o  
r mPU  
AL2  
Ac T  
r n GH  
PSEc  
FSH  
REU  
2 0 0 0  
b c d  
n o n E  
r mT  
LTc h  
c o o l  
n o n E  
o n  
LI N  
GSc h  
n o  
b Lo c  
Ti Td  
o n  
SEc  
AL3  
d t YP  
FSH  
PU  
LTc h  
m- A  
o n  
D1 SA  
b Lo c  
r - h  
o n  
ENAB  
Pwr F  
AACC 2000 Carbon  
Nov. 1, 1997  
66  
 
Marathon Monitors Inc.  
Logic  
Config  
Alarms  
Config  
Comms1  
Config  
Comms2  
Config  
Module1  
Config  
LAb  
AA  
Ha  
J A  
1 A  
Co n F  
Co n F  
Co n F  
Co n F  
Co n F  
i d  
i d  
i d  
i d  
i d  
AL4  
Lo G  
RELY  
CMS  
NONE  
d Cr E  
FSH  
Fu n c  
Fu n c  
Fu n c  
Fu n c  
LTc h  
Ma n  
n o r  
OP1  
o n  
SEn S  
b Au d  
Ua L.L  
b Lo c  
n o r  
9 6 0 0  
0
o n  
I FSH  
Pr TY  
UALH  
y e s  
n o n E  
1 0 0  
2 FSL  
r ES  
u n i T  
n o  
Fu LL  
mA  
AL3  
d ELY  
Ou TL  
n o  
n o  
4 .0  
AL4  
Ou TH  
n o  
2 0 .0  
Plus  
Event  
Outputs  
AACC 2000 Carbon  
Nov. 1, 1997  
67  
 
Marathon Monitors Inc.  
Module2  
Config  
Module3  
Config  
Module4  
Config  
Module  
Config  
Module  
Config  
Module  
Config  
2 A  
3 A  
4 A  
4 C  
5 A  
5 C  
Co n F  
Co n F  
Co n F  
Co n F  
Co n F  
Co n F  
i d  
i d  
i d  
i d  
i d  
i d  
d Cr E  
d Cr E  
r ELY  
r ELY  
r ELY  
r ELY  
Fu n c  
Fu n c  
Fu n c  
Fu n c  
Fu n c  
Fu n c  
OP2  
H- CO  
DI G  
DI G  
DI G  
DI G  
Ua L.L  
i n PT  
SEn S  
SEn S  
SEn S  
SEn S  
0
Hr 1 n  
i n u  
i n u  
n o r  
n o r  
UALH  
i mP  
1 FSH  
1 FSH  
1 FSH  
1 FSH  
1 0 0  
o f f  
YES  
n o  
n o  
n o  
u n i T  
i n PL  
2 FSL  
2 FSL  
2 FSL  
2 FSL  
mA  
0 .0  
n o  
YES  
n o  
n o  
Ou TL  
i n PH  
AL3  
AL3  
AL3  
AL3  
4 .0  
2 .0  
n o  
n o  
n o  
n o  
Ou TH  
UALL  
AL4  
AL4  
AL4  
AL4  
2 0 .0  
0
n o  
n o  
n o  
n o  
UALH  
i mp  
i mp  
2 0 0 0  
Ye s  
Ye s  
b u r n  
b u r n  
y e s  
y e s  
UEr i  
UEr i  
n o  
n o  
PFLT  
PFLT  
n o  
n o  
AACC 2000 Carbon  
Nov. 1, 1997  
68  
 
Marathon Monitors Inc.  
Module  
Config  
Custom  
Config  
Calibration  
Config  
Password  
Config  
Exit  
6 A  
CUST  
CAL  
PASS  
Ex i t  
Co n F  
Co n F  
Co n F  
Co n F  
i d  
i n 1  
c AL  
ACCP  
c n FP  
r ELY  
0 .0  
n o n E  
Fu n c  
UAL1  
UCAL  
PMV  
0 .0  
NO  
i n PT  
i n 2  
Pt 1 L  
Pt 1 H  
Hi Ln  
1 .0  
i mP  
UAL2  
Au t o  
2 0 0 .0  
i n PL  
i n 3  
OF1 L  
- 0 .2  
2 .0  
0 .0  
i n PH  
UAL.3  
OF1 H  
1 .8  
3 5 0 .0  
0 .0  
UALL  
Pt 2 L  
Pt 2 H  
- 2 0 0  
UALH  
1 8 0 0  
i n 8  
7 .0  
OF2 L  
0 .0  
UAL.8  
8 0 0 .0  
OF2 H  
0 .0  
AACC 2000 Carbon  
Nov. 1, 1997  
69  
 
Marathon Monitors Inc.  
CONFIGURATION PARAMETER TABLES  
Name  
Description  
Values  
Meaning  
Instrument configuration  
i n S t  
Instrument Function  
% Carbon  
Zr Fn  
Ca r b  
Control type  
PID control  
On/off control  
Boundless motorised valve  
control - no feedback  
required  
Ct r L  
Pi d  
On .OF  
VP  
Bounded motorised valve  
VP b  
control - feedback required  
Instrument USE  
Control action  
Type of cooling  
Controller  
Monitor  
Reverse acting  
Direct acting  
Linear  
t YPE  
Ac t  
c t r L  
Mo n  
r Ev  
d i r  
Li n  
o i L  
Co o L  
Oil (50mS minimum on-  
time)  
Water (non-linear)  
Fan (0.5S minimum on-  
time)  
H2 O  
FAn  
Proportional only to error  
On/off cooling  
Pr o P  
o n .OF  
Integral & derivative  
time units  
Seconds, OFF to 9999  
Minutes, OFF to 999.9  
Enabled  
Disabled  
Enabled  
Disabled  
On  
Off  
t i .t d  
m- A  
SEc  
mi n  
En Ab  
d i SA  
En Ab  
d i SA  
o n  
Front panel Auto/Man button  
Front panel Run/Hold button  
Power feedback  
r - h  
Pwr F  
Fwd .t  
OFF  
Feed forward type  
None  
n o n e  
FEEd  
SP.FF  
PV.FF  
Normal feed forward  
Setpoint feed forward  
PV feed forward  
Sensor break output  
Forced manual output  
Go to pre-set value  
Freeze output  
Bumpless Auto/Manual  
transfer  
Sb r .t  
FOP  
Sb .OP  
Ho Ld  
n o  
Returns to the Manual  
value that was set when  
last in Manual mode  
Steps to forced output  
level. Value set in ‘FOP’ of  
o p - Li s t ’ in Operator  
Level  
t r a c  
St e p  
BCD input function  
Not used  
Select program number  
Select setpoint number  
b c d  
n o n e  
p r o g  
s p  
AACC 2000 Carbon  
Nov. 1, 1997  
70  
 
Marathon Monitors Inc.  
Gain schedule enable  
Disabled  
Enabled  
g s c h  
n o  
y e s  
Process value config  
Inststrument units  
p V  
u n i t  
0 C  
Celsius  
Farenheit  
Kelvin  
0 F  
0 k  
Decimal places in the  
displayed value  
Display units blanked  
None  
One  
Two  
d e c .p  
n o n e  
n n n n  
n n n .n  
n n .n n  
Range low  
Range high  
Low range limit. Also setpoint limit for  
alarms and programmers  
High range limit. Also setpoint limit for  
alarms and programmers  
r n g .l  
r n g .h  
Name  
i P  
i n Pt  
Description  
Input configuration  
Input type  
Values Meaning  
J thermocouple  
J .t c  
k .t c  
L.t c  
r .t c  
b .t c  
n .t c  
t .t c  
S.t c  
PL 2  
C.t c  
K thermocouple  
L thermocouple  
R thermocouple (Pt/Pt13%Rh)  
B thermocouple (Pt30%Rh/Pt6%Rh)  
N thermocouple  
T thermocouple  
S thermocouple (Pt/Pt10%Rh)  
PL 2 thermocouple  
Custom downloaded t/c (default = type  
C)  
100W platinum resistance thermometer  
Linear millivolt  
r t d  
mV  
Linear voltage  
Linear milliamps  
v o Lt  
mA  
Square root volts  
Square root milliamps  
Sr V  
Sr A  
mV.C  
* see “ CUST” List.  
8-point millivolt custom linearisation*  
8-point Voltage custom linearisation*  
8-point milliamp custom linearisation*  
V.C  
mA.C  
Name  
CJ C  
Description  
Cold Junction  
Compensation  
Values Meaning  
Automatic internal compensation  
Au t o  
0 o C  
0oC external reference  
45oC external reference  
50oC external reference  
No cold junction compensation  
4 5 o C  
5 0 o C  
OFF  
Sensor Break Impedance  
Disabled (only with linear inputs)  
Factory set  
Impedance of input > 5KW  
Impedance of input > 15KW  
i mp  
Of f  
Au t o  
Hi  
Hi .Hi  
AACC 2000 Carbon  
Nov. 1, 1997  
71  
 
Marathon Monitors Inc.  
Linear Input Scaling - The next 4 parameters only appear if a linear or sq rt input is chosen.  
Displayed Value  
Input value low  
i n p .L  
i n p .H  
VAL.L  
VAL.H  
VAL.  
H
Input value high  
Displayed reading low  
Displayed reading high  
VAL.  
L
Electrical  
Input  
i nP.L  
i nP.H  
Name Description  
Values Meaning  
Setpoint configuration  
S P  
Number of setpoints  
Remote Tracking  
Select number of setpoints available  
n SP  
r m.t r  
2 , 4 , 1 6  
OFF  
Disable  
Local setpoint tracks remote setpoint  
Disable  
t r Ac  
OFF  
Manual Track  
m.t r  
Local setpoint tracks PV when in  
manual  
t r Ac  
Setpoint rate limit units  
Per second  
r mP.U  
PSEc  
Pmi n  
PHr  
Per minute  
Per hour  
Remote setpoint configuration  
Disable  
r mt  
n o n E  
SP  
Remote setpoint  
Remote setpoint + local trim  
Remote trim + local setpoint  
Lo c .t  
r mt .t  
AACC 2000 Carbon  
Nov. 1, 1997  
72  
 
Marathon Monitors Inc.  
Alarm configuration  
Values  
AL  
The controller contains four ‘soft’ alarms, which are configured in this list. Once configured,  
they can be attached to a physical output as described in the alarm relay configuration list,  
AA Co n f .  
see Table A  
Alarm 1 Type  
Latching  
AL1  
Lt c h  
n o /YES/Ev n t /mAn *  
n o /YES  
Blocking  
b Lo c  
AL2  
see Table A  
Alarm 2 Type  
Latching  
Lt c h  
n o /YES/Ev n t /mAn *  
n o /YES  
Blocking  
b Lo c  
AL3  
see Table A  
Alarm 3 Type  
Latching  
Lt c h  
n o /YES/Ev n t /mAn *  
n o /YES  
Blocking  
b Lo c  
AL4  
see Table A  
Alarm 4 Type  
Latching  
Lt c h  
n o /YES/Ev n t /mAn *  
Blocking (not if ‘AL4 ’ = ‘r At ’)  
b Lo c  
n o /YES  
Table A - Alarm types  
Value Alarm type  
No alarm  
OFF  
FSL  
FSH  
d Ev  
d Hi  
d Lo  
LCr  
HCr  
FL2  
FH2  
LOP  
HOP  
LSP  
HSP  
r At  
PV Full scale low  
PV Full scale high  
PV Deviation band  
PV Deviation high  
PV Deviation low  
Load Current low  
Load Current high  
Input 2 Full Scale low  
Input 2 Full Scale high  
Working Output low  
Working Output high  
Working Setpoint low  
Working Setpoint high  
PV Rate of change  
AL4 only  
Alarm Modes  
n o ’ means that the alarm will be non-latching.  
YES’ means that the alarm will be latched, with automatic resetting. Automatic resetting means that if a  
reset is actioned before the alarm has cleared, then it will automatically reset when it clears  
AACC 2000 Carbon  
Nov. 1, 1997  
73  
 
Marathon Monitors Inc.  
Name Description  
Values  
Meaning  
Digital input 1 configuration  
Action on contact closure  
Logic input  
LA  
i d  
Identity  
Lo G.i  
n o n E  
mAn  
r mt  
SP.2  
Pi d .2  
t i H  
t u n E  
d r A  
Ac .AL  
Ac c S  
Lo c .b  
u P  
Function of input  
The function is active  
when the input has a contact  
closure to the common  
terminal - LC  
No function  
Fu n c  
Manual mode select  
Remote setpoint select  
Setpoint 2 select  
PID set 2 select  
Integral hold  
One-shot self-tune enable  
Adaptive tune enable  
Acknowledge alarms  
Select Full access level  
Keylock  
Simulate pressing of the  
button  
d wn  
Simulate pressing of the  
button  
Sc r L  
PAGE  
Simulate pressing of the  
button  
Simulate pressing of the  
button  
These BCD inputs are used to  
select either a program number  
or the setpoint number  
Least significant BCD digit  
2nd BCD digit  
3rd BCD digit  
b c d .1  
b c d .2  
b c d .3  
b c d .4  
according to the setting of the  
4th BCD digit  
5th BCD digit  
parameter b c d in the i n St b c d .5  
configuration list  
Most significant BCD digit  
Standby - ALL control outputs  
turned OFF (alarm Outputs are  
not affected)  
b c d .6  
St b y  
PV Select:  
PV.SL  
Closed = PV1 / Open = PV2  
Initiate Impedance test  
I MP  
Lb  
Digital input 2 configuration  
Action on contact closure  
As per Digital input 1 configuration  
AACC 2000 Carbon  
Nov. 1, 1997  
74  
 
Marathon Monitors Inc.  
Name Description  
Values  
Meaning  
Alarm relay configuration  
AA  
Identity  
Relay output  
No function  
Digital output  
i d  
r ELy  
Function  
Fu n c  
n o n E  
d I G  
n o r  
Digital output sense  
Normal (output energises when  
SEn S  
TRUE, e.g. program events)  
Inverted (output de-energises  
i n v  
when TRUE, e.g. alarms)  
The following digital events appear after SEn S. Any one, or more, of the events can be  
combined on to the output (see Fig. 6-2) by selecting YESin the lower readout.  
Alarm 1 active  
Alarm 2 active  
1 - - -  
2 - - -  
YES / n o (- - - ) = alarm type (e.g. FSL).  
If an alarm has not been  
YES / n o  
configured  
Alarm 3 active  
3 - - -  
YES / n o in AL Co n Flist, then display  
will  
Alarm 4 active  
4 - - -  
mAn  
YES / n o differ:- e.g. Alarm 1 = ‘AL 1 ’.  
Controller in manual mode  
Sensor break  
YES / n o  
YES / n o  
YES / n o  
YES / n o  
YES / n o  
YES / n o  
YES / n o  
Sb r  
PV out of range  
Loop break  
SPAn  
Lb r  
Load failure alarm  
Tuning in progress  
Ld .F  
t u n E  
d c .F  
Voltage output open circuit, or mA  
output open circuit  
module connection open circuit  
Input 1 Failure  
r mt .F  
i P1 .F  
I MP  
YES / n o  
Impedance test in progress  
Probe burn off in progress  
Probe verification in progress  
Verification Fault  
b u r n  
VERi  
VFLT  
PFLT  
n w.AL  
En d  
Probe Fault  
New Alarm has occurred  
YES / n o  
End of setpoint rate limit, or end of  
program  
YES / n o  
Program Synchronisation active  
SYn c  
YES / n o  
AACC 2000 Carbon  
Nov. 1, 1997  
75  
 
Marathon Monitors Inc.  
Digital Events  
n o r  
d I G  
OR  
SEnS  
Output  
Module  
i n v  
Figure 6-2 Combining several digital events on to one output  
Name Description  
Values Meaning  
Comms 1 module config  
HA  
Identity of the module installed  
2-wire EIA-485  
i d  
c mS  
For ‘i d ’ = ‘c ms ’ (Digital communications) use this parameter table:  
Function  
Modbus protocol  
Fu n c  
mo d  
mAr  
Marathon Monitors protocol  
Baud Rate  
b Au d  
d ELy  
1 2 0 0 , 2 4 0 0 , 4 8 0 0 , 9 6 0 0 ,  
1 9 .2 0 (19,200)  
Delay - quiet period, required by  
No delay  
n o  
some comms  
adaptors  
Delay active - 10mS  
YES  
Comms Parity  
No parity  
Pr t y  
n o n E  
Ev En  
Od d  
Even parity  
Odd parity  
The following parameters only appear if the function chosen is Modbus protocol.  
Comms Resolution  
Full resolution  
r ES  
Fu LL  
I n t  
Integer resolution  
AACC 2000 Carbon  
Nov. 1, 1997  
76  
 
Marathon Monitors Inc.  
module config  
J A  
NO configuration required  
Name  
Description  
Values Meaning  
1 A/b /C(1)  
Module 1 configuration  
Identity of module installed  
Module not fitted  
Relay output  
Non-isolated DC output  
Logic/ output  
Logic input  
i d  
n o n E  
r ELy  
d C.OP  
Lo G  
Lo G.i  
SSr  
(1) If a dual-, or triple-, channel  
module is installed then the list  
headers 1 b and 1 C also appear  
Triac output  
DC retransmission  
(isolated)  
d c .r E  
Isolated DC output  
d c .OP  
For ‘i d ’ = ‘r ELy ’, ‘Lo G’, or ‘SSr ’ use this parameter table:  
Function  
Function disabled  
Digital output function  
Heating output  
Fu n c  
n o n E  
d I G  
(Only Channels 1 A and 1 C can be HEAt  
Heating, or Cooling)  
Cooling output  
COOL  
Open motorised valve  
Close motorised valve  
mode 1 heating  
u p  
d wn  
(Only if i d ’ = ‘Lo G’) SSr .1  
mode 2 heating  
(Only if i d ’ = ‘Lo G’) SSr .2  
Displayed Value  
VAL.L  
VAL.H  
% PID demand signal  
giving minimum output -  
Ou t .L’  
VAL.H  
% PID demand signal  
giving maximum output -  
Ou t .H’  
Retransmitted  
VAL.L  
Output  
0%  
100%  
Ou t .L  
Ou t .H  
SEn S  
Minimum average power  
Maximum average power  
Sense of output  
(Only if Fu n c ’ = ‘d I G’)  
Normal (output energises  
when TRUE, e.g  
n o r  
program events)  
Inverted (output de-  
energises when TRUE,  
e.g. alarms)  
i n v  
Notes:  
1. When SEn Sappears, then further parameters are available.  
These are identical to those in the AA Co n Flist on Page 6-12.  
AACC 2000 Carbon  
Nov. 1, 1997  
77  
 
Marathon Monitors Inc.  
2. To invert a PID output, the Val. H can be set below the Val.L  
Name  
Description  
Values Meaning  
For ‘i d ’ = ‘d C.OP’, ‘d c .r E’, or ‘d c .OP’ use this parameter table:  
Function  
Function disabled  
Fu n c  
n o n E  
HEAt  
COOL  
PV  
Heating output  
Cooling output  
Retransmission of PV  
Retransmission of setpoint  
Retransmission of error signal  
Retransmission of OP power  
wSP  
Er r  
OP  
%PID, or Retransmission Value  
VAL.H  
% PID, or Retrans’n Value,  
giving minimum output  
VAL.L  
VAL.H  
% PID, or Retrans’n Value,  
giving maximum output  
Electrical  
Output  
u n i t  
v o Lt = Volts, mA = milliamps  
Minimum electrical output  
Maximum electrical output  
VAL.L  
Out.L  
Ou t .L  
Ou t .H  
Out.H  
For ‘i d ’ = ‘Lo G.i ’ (i.e logic input) use the LA Co n f ’ list on Page 6-11.  
Module 2 configuration  
2 A/b /C  
As per module 1 configuration, but excluding the ‘SSr .1 ’, ‘SSr .2 ’ functions.  
Identity of module installed.  
As per module 2 plus:  
i d  
Transmitter power  
supply  
Potentiometer input  
t PSU  
Po t .i  
Continued on next page  
AACC 2000 Carbon  
Nov. 1, 1997  
78  
 
Marathon Monitors Inc.  
For ‘i d ’ = ‘Po t .i (i.e. potentiometer input module) use this parameter  
table:  
Function  
Function disabled  
Remote Setpoint  
Fu n c  
n o n E  
r SP  
Feedforward input  
Fwd .i  
r OP.h  
r OP.L  
VPo S  
Remote OP power max.  
Remote OP power min.  
Motorised valve position  
Displayed value low  
equivalent to 0%  
Displayed Value  
potentiometer position  
VAL.H  
VAL.L  
VAL.H  
Displayed value high  
equivalent to 100%  
potentiometer position  
VAL.L  
Electrical  
Input  
i nP.L  
i nP.H  
AACC 2000 Carbon  
Nov. 1, 1997  
79  
 
Marathon Monitors Inc.  
3 A/b /C  
Module 3 configuration  
As per module 2 configuration, plus ‘i d ’ = ‘d C.i P’  
For ‘i d ’ = ‘d C.i P’ use this parameter table.  
THIS INCLUDES THE SECOND PV FUNCTIONS  
Function  
Function disabled  
Remote Setpoint  
Fu n c  
n o n E  
r SP  
Fwd .i  
r OP.h  
r OP.L  
Hi  
Feedforward input  
Remote OP power max.  
Remote OP power min.  
PV = The highest of i P.1 , or i P.2  
PV = The lowest of i P.1 , or i P.2  
Derived function, where  
PV = (f .1 x i P1 ) + (f .2 x i P2 ).  
Lo  
Ft n  
F.1 ’ and ‘F.2 ’ are scalars which are  
found in ‘i p - Li s t ’ of Operator Level  
Select i p .1 , or i p .2 via Comms, front  
SEL  
panel buttons, or a digital input  
Transition of control between i p .1  
and i p .2 . The transition region is set  
by the values of ‘Lo .I p ’ and ‘Hi .I p ’,  
which are found in ‘i p - Li s t ’ of  
Operator Level. PV = i p .1 below  
Lo .I p ’  
t r An  
PV = i p .2 above ‘Hi .I p ’  
Input type  
i n p t  
CJ C  
Refer to ‘i p Co n f ’ for all types, + the following:  
High Impedance (range = 0 to 2 volt)  
Hi I n  
Cold Junction  
Compensation  
No cold junction compensation  
Automatic internal compensation  
0oC external reference  
OFF  
Au t o  
0 o C  
4 5 o C  
5 0 o C  
45oC external reference  
50oC external reference  
Sensor Break Impedance  
Disabled (only with linear inputs)  
Factory set  
Impedance of input > 15KW  
Impedance of input > 30KW  
i mp  
Of f  
Au t o  
Hi  
Hi .Hi  
AACC 2000 Carbon  
Nov. 1, 1997  
80  
 
Marathon Monitors Inc.  
Linear Input Scaling - The next four parameters only appear if a linear input is chosen.  
Displayed value  
Input value low  
i n P.L  
i n P.H  
VAL.L  
VAL.H  
Input value high  
Displayed value low  
Potentiometer  
position  
VAL.L  
Displayed value high  
VAL.H  
0%  
100%  
Name  
Description  
Values Meaning  
4
A /C  
Module configuration  
As per module AA configuration  
5
A /C  
Module configuration  
As per module AA configuration  
Name Description  
Values  
Meaning  
Module configuration  
Identity of module DC input  
Function  
6 A  
DC input  
i d  
r ELy  
n o n E  
Hi I n  
Pin v probe mv input  
Fu n c  
i n PT  
Input type  
High Impedance (range = 0 to 2 volt)  
Displayed Value  
Input value low  
i n P.L  
i n P.H  
VAL.L  
VAL.H  
VAL.H  
Input value high  
Displayed value low  
Displayed value high  
VAL.L  
i nP.L  
Electrical  
Input  
i nP.H  
AACC 2000 Carbon  
Nov. 1, 1997  
81  
 
Marathon Monitors Inc.  
8-point Custom Linearisation (1)  
Cu s t  
i n  
1
Custom input 1  
Displayed Value  
Linearisation Value representing  
VAL.1  
VAL.8  
i n 1  
i n  
8
VAL.3  
VAL.1  
Custom input 8  
Electrical  
Input  
Linearisation Value representing  
i n 8  
VAL.8  
i n 1  
i n 3  
i n 8  
Note:  
1. Custom Linearisation is only available when ‘3 a - Co n f ’or i P- Co n F list  
has ‘i n p t ’ set to ‘mV.C’, or ‘mA.C’, or ‘V.C’.  
1. The values and inputs must be continuously increasing or decreasing  
AACC 2000 Carbon  
Nov. 1, 1997  
82  
 
Marathon Monitors Inc.  
Name  
Description  
Values Meaning  
Calibration  
CAL  
In this mode you can  
1. Calibrate the instrument using a mV source - r c AL or ref source cal.  
2. Offset the calibration to account for errors in actual sensor  
measurement and a ref sensor - UCAL or user calibration  
3. Return to factory set calibration - FACT or factory set calibration.  
Goto User  
calibration  
table-See also  
chapter 7  
Calibration  
point  
No calibration  
r c AL  
n o n E  
Calibrate main Process Value input.  
Calibrate DC input, or PV 2.  
PV  
Go to input  
Calibation table  
PV.2  
Calibrate DC output high - Module 1  
Calibrate DC output low - Module 1  
Calibrate DC output high - Module 2  
Calibrate DC output low - Module 2  
Calibrate DC output high - Module 3  
Calibrate DC output low - Module 3  
1 A.Hi  
1 A.Lo  
2 A.Hi  
2 A.Lo  
3 A.Hi  
3 A.Lo  
Go to  
DC Output  
Calibration  
table  
INPUT CALIBRATION  
For CAL= PV’, or ‘PV.2 ’, the following parameters apply.  
PV Calibration Value  
Idle  
PV  
I d LE  
mv .L  
Select 0mV as the calibration  
point  
Select 50mV as the calibration  
point  
mv .H  
V 0  
Select 0Volt as the calibration  
point  
1. Select calibration value  
2. Apply specified input  
Select 10V as the calibration  
point  
V 1 0  
Select 0oC CJC calibration point  
CJ C  
r t d  
Select 400W as the calibration  
point  
3. Press  
to step to GO’  
High impedance: 0Volt cal’n  
point  
HI 0  
High impedance: 1.0 Volt cal’n  
point  
HI 1 .0  
Restore factory calibration  
Waiting to calibrate PV point  
See Note below.  
FACt  
n o  
Start calibration  
GO  
AACC 2000 Carbon  
Nov. 1, 1997  
83  
 
Marathon Monitors Inc.  
Start calibration  
YES  
Select YESwith  
Wait for calibration to  
complete.  
or  
Busy calibrating  
b u Sy  
d o n E  
FAI L  
PV input calibration completed  
Calibration failed  
Note. When a DC input module is installed for the first time, or there is a requirement to change one,  
then the microprocessor in the controller needs to read the factory calibration data stored in the module.  
Select ‘FACt ’ as the calibration value. Step to ‘GO’ and start calibration.  
DC Output Calibration  
The following parameters apply to DC output modules ie for r c AL = 1 A.Hi to 3 A.Lo  
Output Calibration High  
c AL.H  
0
0 = Factory set calibration.  
Trim value until output = 9V, or  
18mA  
Output Calibration Low  
c AL.L  
0
0 = Factory set calibration.  
Trim value until output = 1V, or  
2mA  
User calibration  
UCAL  
User calibration enable  
Yes/no  
Low calibration point for Input 1  
The factory calibration point at which the  
low point offset was performed.  
p t 1 .L  
High calibration point for Input 1  
The factory calibration point at which the  
high point offset was performed.  
p t 1 .H  
Offset Low for Input 1  
Calculated offset, in display units.  
Calculated offset, in display units.  
OF1 .L  
OF1 .H  
p t 2 .L  
Offset High for Input 1  
Low calibration point for Input 2  
The factory calibration point at which the  
low point offset was performed.  
High calibration point for Input 2  
The factory calibration point at which the  
high point offset was performed.  
p t 2 .H  
Offset Low for Input 2  
Offset High for Input 2  
Calculated offset, in display units.  
Calculated offset, in display units.  
OF2 .L  
OF2 .H  
Name  
Description  
Values Meaning  
Password configuration  
FuLL or Edit level password  
Configuration level password  
P AS S  
ACC.P  
c n F.P  
Exit configuration  
Ex i t  
n o /YES  
AACC 2000 Carbon  
Nov. 1, 1997  
84  
 
Marathon Monitors Inc.  
User calibration  
This chapter has five topics:  
·
·
·
·
·
WHAT IS THE PURPOSE OF USER CALIBRATION?  
USER CALIBRATION ENABLE  
OFFSET CALIBRATION  
TWO POINT CALIBRATION  
CALIBRATION POINTS AND CALIBRATION OFFSETS  
To understand how to select and change parameters in this chapter you will need to have  
read Chapter 2 - Operation, Chapter 3- Access Levels and Chapter 6 - Configuration.  
WHAT IS THE PURPOSE OF USER CALIBRATION?  
The basic calibration of the controller is highly stable and set for life. User calibration  
allows you to offset the ‘permanent’ factory calibration to either:  
1. Calibrate the controller to the your reference standards.  
2. Match the calibration of the controller to that of a particular transducer or sensor  
input.  
3. Calibrate the controller to suit the characteristics of a particular installation.  
4. Remove long term drift in the factory set calibration.  
User calibration works by introducing a single point, or two-point, offset  
onto the factory set calibration.  
AACC 2000 Carbon  
Nov. 1, 1997  
85  
 
Marathon Monitors Inc.  
User Calibration Enable  
The User calibration facility must first be enabled in configuration level by setting the  
parameter ‘UCAL' in the input conf list to 'YES'. This will make the User calibration  
parameters visible in Operator ‘Fu LL’ level.  
Select configuration level as shown in Chapter 5, Configuration.  
The Calibration Configuration List  
Press  
until you reach the ‘CAL- Co n f ’ list.  
Press  
until you reach UCAL’.  
User Calibration Enable  
Use  
or  
YES: Calibration enable  
n o : Calibration disabled  
to select:  
·
·
Press  
and  
together to go to the Ex i t  
display.  
+
Exit configuration  
Use  
or  
to select ‘YES’ to return to Operator  
level.  
AACC 2000 Carbon  
Nov. 1, 1997  
86  
 
Marathon Monitors Inc.  
Offset calibration  
Offset calibration is used to apply a single fixed offset over the full display range of the  
controller.  
Displayed Value  
Factory Calibration  
Fixed Offset  
Input  
To calibrate, proceed as follows:  
1. Connect the input of the controller to the source device to which you wish to calibrate.  
2. Set the source to the desired calibration value.  
3. The controller will display the current measurement of the value.  
4. If the displayed value is correct, then the controller is correctly calibrated and no  
further action is necessary. If it is incorrect, then follow the steps shown below.  
Select ‘Fu LL’ access level, as described in Chapter 3.  
Input list header  
Press  
until you reach the input list header.  
x 3  
Press  
until you reach the CALdisplay.  
Calibration type  
·
·
FACt :  
Factory Calibration  
User Calibration  
USEr :  
Use  
or  
to select ‘FACt ’.  
Selecting ‘FACt ’ reinstates the factory  
calibration and allows the application of a single  
fixed offset.  
Press  
continued on the next page  
AACC 2000 Carbon  
Nov. 1, 1997  
87  
 
Marathon Monitors Inc.  
Set Offset 1  
Use  
or  
to set the offset value of Process  
Value 1 (PV1).  
The offset value is in display units Press  
Set Offset 2  
Use  
or  
to set the offset value of  
Process Value 2 (PV2), if configured.  
The offset value is in display units.  
Press  
The table below shows the parameters which  
appear after ‘OFS.2 ’. These are all read only  
values and are for information. Press  
through them.  
to step  
IP1 measured value (at terminals)  
mV.1  
mV.2  
IP2 measured value (at terminals), if DC  
input in Module 3 position  
See table on  
the right for  
additional  
IP1 Cold Junction Compensation  
IP2 Cold Junction Compensation  
IP1 Linearised Value  
CJ C.1  
CJ C.2  
Li .1  
IP2 Linearised Value  
Li .2  
parameters.  
Shows the currently selected input  
PV.SL  
If you do not want to look at these parameters,  
then press  
and this returns you to the ‘i P-  
Li St ’ header.  
To protect the calibration against unauthorised  
adjustment, return to Operator level and make  
sure that the calibration parameters are hidden.  
Parameters are hidden using the ‘Edit’ facility  
described in Chapter 3, Access Levels  
AACC 2000 Carbon  
Nov. 1, 1997  
88  
 
Marathon Monitors Inc.  
Two-point calibration  
The previous section described how to apply a offset, or trim, calibration, which applies a  
fixed offset over the full display range of the controller. A two-point calibration is used  
to calibrate the controller at two points and applies a straight line between them. Any  
readings above, or below, the two calibration points will be an extension of this straight  
line. For this reason it is best to calibrate with the two points as far apart as possible.  
Offset introduced  
Displayed Value  
User Calibration  
Factory Calibration  
Calibration high-point value  
High-point calibration  
x
Low-point calibration  
Calibration low-point value  
x
Offset introduced  
Proceed as follows:  
1. Decide upon the low and high points at which you wish to calibrate.  
2. Perform a two point calibration in the manner described below  
Input list header  
Press  
until you reach the input list header, ‘i p Li St ’.  
Press  
until you reach the CALdisplay.  
Calibration type  
x 3  
·
·
FACt :  
Factory Calibration  
User Calibration  
USEr :  
Use  
or  
to select ‘USEr ’.  
Selecting ‘USEr ’ enables two-point calibration.  
[If two-point calibration is unsatisfactory, select ‘FACt ’ to  
return to the factory set calibration.]  
Press  
AACC 2000 Carbon  
Nov. 1, 1997  
89  
 
Marathon Monitors Inc.  
Select Low-point Calibration  
This is the Calibration Status display. This display shows  
that no input is selected for calibration.  
·
·
n o n E:  
i p 1 .L:  
selected  
i p 1 .H:  
selected  
i p 2 .L:  
selected  
i p 2 .H:  
selected  
No selection  
Input 1 (PV1) calibration low-point  
·
·
·
Input 1 (PV1) calibration high-point  
Input 2 (PV2) calibration low-point  
Input 2 (PV2) calibration high-point  
Use  
/
to select the parameter for the Low Calibration  
point of Input 1, ‘i p 1 .L’.  
Press  
Adjust low-point calibration  
This is the display for adjusting the Low Calibration point of  
Input 1. The lower readout is a live reading of the process  
value, which changes as the input changes.  
Make sure that the calibration source is connected to the  
terminals of Input 1, switched on and feeding a signal to the  
controller. It should be set to the desired low-point  
calibration value. If the lower readout does not show this  
value, then use  
value.  
/
to adjust the reading to the required  
Press  
to return to the ‘i p - Li s t ’ header.  
To perform the High-point Calibration, repeat the above  
procedure, selecting ‘i p 1 .H’ in the ‘CAL.S’ display for  
adjustment.  
Press  
three times.  
Calibration type  
USEr ’ was selected for the Low-point Calibration, and has  
remained selected.  
Press  
AACC 2000 Carbon  
Nov. 1, 1997  
90  
 
Marathon Monitors Inc.  
Select High-point Calibration  
This is the Calibration Status display, again.  
Use  
/
to select the parameter for the High-point  
Calibration of Input 1, ‘i p 1 .H’.  
Press  
Adjust High-point Calibration  
This is the display for adjusting the High Calibration point of  
Input 1. The lower readout is a live reading of the process  
value, which changes as the input changes.  
Feed the desired high-point calibration signal to the  
controller, from the calibration source. If the lower readout  
does not show this value, then use  
reading to the required value.  
/
to adjust the  
Press  
to return to the ‘i p - Li s t ’ header.  
To protect the calibration against unauthorised adjustment  
return to Operator level and make sure that the calibration  
parameters are hidden. Parameters are hidden using the  
Ed i t ’ facility described in Chapter 3.  
To perform a User Calibration on Input 2, proceed as with  
Input 1 above, except that when ‘CAL.S- n o n E’ appears,  
press  
/
until ‘CAL.S- i P2 .L’ is obtained, then  
proceed as with Input 1. Repeat the procedure for ‘i P2 .H’  
AACC 2000 Carbon  
Nov. 1, 1997  
91  
 
Marathon Monitors Inc.  
Calibration points and Calibration offsets  
If you wish to see the points at which the User calibration was performed and the  
value of the offsets introduced, then these are shown in Configuration, in ‘CAL-  
Co n f ’.  
The parameters are:  
Name  
Parameter description  
Meaning  
Low calibration point for Input 1  
The factory calibration point at which the  
low point offset was performed.  
p t 1 .L  
High calibration point for Input 1  
The factory calibration point at which the  
high point offset was performed.  
p t 1 .H  
Offset Low for Input 1  
Calculated offset, in display units.  
Calculated offset, in display units.  
OF1 .L  
OF1 .H  
p t 2 .L  
Offset High for Input 1  
Low calibration point for Input 2  
The factory calibration point at which the  
low point offset was performed.  
High calibration point for Input 2  
The factory calibration point at which the  
high point offset was performed.  
p t 2 .H  
Offset Low for Input 2  
Offset High for Input 2  
Calculated offset, in display units.  
Calculated offset, in display units.  
OF2 .L  
OF2 .H  
Note:  
The value of each of the parameters in the above table may  
buttons.  
also be altered by using the  
/
AACC 2000 Carbon  
Nov. 1, 1997  
92  
 
Marathon Monitors Inc.  
Parameter Table (Default)  
Home list  
Process Variable  
Target Setpoint  
Output power  
OP  
Auto/Manual Mode  
Reference Number  
M-a  
rEF  
Probe List  
Process Factor  
PF  
Milivolt Offset  
OFFS  
H-CO Compensation  
Probe Temperature  
Probe Millivolts  
Auxilliary Input  
H-CO  
Ptc  
Pmv  
Axin  
Care List  
Care  
CArE  
prt.r  
tmin  
VrF.r  
Pti  
imPH  
Ptrt  
bot  
Measured Recovery Time  
Temperature Minimum  
Verification Test Result  
Probe Test Interval  
Maximum Impedance  
Probe Test Recovery Time  
Burn Off Time  
Burn Off Recovery Time  
Final Delay  
Time Of Average 2  
Probe Impedance Result  
bort  
FdE  
tA2  
imp.r  
AACC 2000 Carbon  
Nov. 1, 1997  
93  
 
Marathon Monitors Inc.  
User List  
Number 1  
n1  
Number 2  
Number 3  
Number 4  
Number 5  
Number 6  
Number 7  
Number 8  
Number 9  
Number 10  
Number 11  
Number 12  
Number 13  
Number 14  
Number 15  
n2  
n3  
n4  
n5  
n6  
n7  
n8  
n9  
n10  
n11  
n12  
n13  
n14  
n15  
Alarm List  
Alarm 1 Setpoint  
Alarm 2 Setpoint  
Alarm 3 Setpoint  
Alarm 4 Setpoint  
Alarm 1 Hysteresis  
Alarm 2 Hysteresis  
Alarm 3 Hysteresis  
Alarm 4 Hysteresis  
Loop Break Time  
1---  
2---  
3---  
4---  
HY1  
HY2  
HY3  
HY4  
Lbt  
Enable Diagnostic Messages  
diAG  
Autotune List  
Autotune Enable  
Automatic manual Reset Calculation  
tunE  
Adc  
AACC 2000 Carbon  
Nov. 1, 1997  
94  
 
Marathon Monitors Inc.  
PID List  
Gain Scheduler Setpoint  
Current PID Set  
G.SP  
Set  
Proportional Band PID1  
Intergal Time PID1  
Derivative Time PID1  
Manual Reset  
Pb  
ti  
td  
rES  
Cutback High  
Hcb  
Cutback Low PID1  
Lcb  
Relative Cool Gain PID1  
Proportional Band PID2  
Intergal Time PID2  
Derivative Time PID2  
Manual Reset PID2  
Cutback High PID2  
Cutback Low PID2  
Relative Cool Gain PID2  
FeedForward Proportional Band  
FeedForward Trim Limit  
rEL.C  
Pb2  
ti2  
td2  
rES2  
Hcb2  
Lcb2  
rEL2  
FF.Pb  
FF.du  
Motor List  
Valve Travel Time  
tm  
Valve Inertia Time  
Int  
Valve Backlash Time  
Minimum On Time  
Valve Sensor Break Strategy  
bAct  
MP.t  
U.br  
Setpoint List  
Setpoint Select  
SSEL  
Setpoint 1  
SP1  
Setpoint 2  
Sp2  
Setpoint 1 Low Limit  
Setpoint 1 High Limit  
Setpoint 2 Low Limit  
Setpoint 2 High Limit  
Local Setpoint trim  
SPL  
SPH  
SP2L  
SP2H  
Hbty  
AACC 2000 Carbon  
Nov. 1, 1997  
95  
 
Marathon Monitors Inc.  
Input List  
Filter 1  
Filter 2  
Filter 3  
FiLt  
FLt2  
FLT3  
CAL  
CJC  
Calibration  
CJC Temperature  
Output List  
Low Power Limit  
High Power Limit  
Output Rate Limit  
OP.Lo  
OP.Hi  
Oprr  
Forced Output Power  
Cycle time OP1  
Hysteresis OP1  
OP1 Minimum On Time  
Cycle time OP2  
Hysteresis OP1  
FOP  
CYC.1  
hYS.1  
ont.1  
CYC.2  
hYS.2  
ont.2  
OP2 Minimum On time  
Deadband  
db  
Sensor Break Output Power  
Sb.OP  
Addr  
Comms List  
Comms Address  
Info List  
Custom Display Type  
SPC Minimum PV  
SPC Maximum PV  
SPC Mean PV  
SPC Time above TIME Trigger  
PV Threshold for Timer Log  
SPC Reset  
diSP  
LoG.L  
Log.H  
LoG.A  
LoG.t  
LoG  
rES  
Control task execution  
time high water mark  
Working Output  
Feedforward Output  
Proportional Output  
Intergral Output  
mCt  
w.OP  
FF.OP  
Pop  
IOP  
Derivative Output  
dOP  
Continued on next page…..  
AACC 2000 Carbon  
Nov. 1, 1997  
96  
 
Marathon Monitors Inc.  
Configuration Mode Parameters  
Inst Conf  
Function: O2, %C, Dewpoint, Redox  
Zr.Fn  
tYPE  
Control Type  
Instrument type: Monitor/Controller  
Control Action  
CtrL  
Act  
Control Time Units  
Manual Key Enable  
dtYP  
Feedforward Type  
Bumpless PD Control  
Sensor Break Action  
Forced Manual Availability  
BCD Input Function  
Gain Scheduling  
ti.td  
m-A  
dtYP  
Fwd.t  
Pd.tr  
Sbr.t  
FOP  
bcd  
Gsch  
PV Conf  
Instrument Units  
Display Resolution  
Exponent  
unit  
dEc.P  
ExP  
Setpoint Minimum  
Setpoint maximum  
rnG.L  
rnG.H  
IP Conf  
Linearisation type  
CJC Type  
Sensor break Impedance  
inPt  
CJC  
imP  
SP Conf  
Number of Setpoints  
Remote Tracking Configuration  
manual track Configuration  
SRL rate units  
nSP  
rm.tr  
m.tr  
rmP.U  
Remote Setpoint Configuration  
Continued on next page…..  
rmt  
AACC 2000 Carbon  
Nov. 1, 1997  
97  
 
Marathon Monitors Inc.  
Alarm Conf  
Alarm 1 Type  
AL1  
Ltch  
bLoc  
AL2  
Ltch  
bLoc  
AL3  
Ltch  
bLoc  
AL4  
Ltch  
bLoc  
Alarm 1 Latch  
Alarm 1 Block  
Alarm 2 Type  
Alarm 2 Latch  
Alarm 2 Block  
Alarm 3 Type  
Alarm 3 Latch  
Alarm 3 Block  
Alarm 4 Type  
Alarm 4 Latch  
Alarm 4 Block  
LA/B Conf  
Logic Input A Ident  
id  
Logic Input A Slot Function  
Logic Input B Ident  
Func  
id  
Logic Input B Slot Function  
Func  
Module AA Conf  
Fixed Module AA Ident  
Fixed Module AA Slot Function  
Summary OP AA invert  
Summary OP AA Conf  
id  
Func  
Sens  
Module H Conf  
Interface Module H Ident  
Interface Module H Slot Function  
Baud Rate  
id  
Func  
bAud  
Comms Parity  
Prty  
Comms Resolution  
Comms Delay  
rES  
dELY  
Module 1A Conf  
Module 1A Ident  
id  
Module 1A Slot Function  
Module 1A Low Value  
Module 1A High Value  
Output 1A units  
Func  
VAL.L  
VAL.H  
unit  
Module 1A Low Output Range  
Module 1A High Output Range  
Continued on next page…..  
Out.L  
Out.H  
AACC 2000 Carbon  
Nov. 1, 1997  
98  
 
Marathon Monitors Inc.  
Module 2A Conf  
Module 2A Ident  
id  
Module 2A Slot Function  
Module 2A Low Value  
Module 2A High Value  
Output 2A units  
Func  
VAL.L  
VAL.H  
unit  
Module 2A Low Output Range  
Module 2A High Output Range  
Out.L  
Out.H  
Module 3A Conf  
Module 3A Ident  
id  
Module 3A Slot Function  
Module 3A Input Type  
Func  
inPt  
Module 3A Sensor break Impedance  
Module 3A Input Value Low  
Module 3A Input Value High  
Module 3A Displayed Value Low  
Module 3A Displayed Value High  
iMP  
inP.L  
inP.H  
VAL.L  
VAL.H  
Module 4A Conf  
Module 4A Ident  
id  
Module 4A Slot Function  
Summary OP 4A Invert  
Summary OP 4A configuration  
Func  
SEnS  
Module 4C Conf  
Module 4C Ident  
id  
Module 4C Slot Function  
Summary OP 4C Invert  
Summary OP 4C configuration  
Func  
SEnS  
Module 5A Conf  
Module 5A Ident  
id  
Module 5A Slot Function  
Summary OP 5A Invert  
Summary OP 5A configuration  
Func  
SEnS  
Module 5C Conf  
Module 5C Ident  
id  
Module 5C Slot Function  
Summary OP 5C Invert  
Summary OP 5C configuration  
Continued on next page…..  
Func  
SEnS  
AACC 2000 Carbon  
Nov. 1, 1997  
99  
 
Marathon Monitors Inc.  
Module 6A Conf  
Module 6A Ident  
id  
Module 6A Slot Function  
Func  
Module 6A Input Type  
inPt  
Module 6A Sensor break Impedance  
Module 6A Input Value Low  
Module 6A Input Value High  
Module 6A Displayed Value Low  
Module 6A Displayed Value High  
iMP  
inP.L  
inP.H  
VAL.L  
VAL.H  
CUST Conf  
Input 1  
Value 1  
Input 2  
Value 2  
Input 3  
Value 3  
Input 4  
Value 4  
Input 5  
Value 5  
Input 6  
Value 6  
Input 7  
Value 7  
Input 8  
Value 8  
in 1  
VAL.1  
in 2  
VAL.2  
in 3  
VAL.3  
in 4  
VAL.4  
in 5  
VAL.5  
in 6  
VAL.6  
in 7  
VAL.7  
in 8  
VAL.8  
CAL Conf  
PASS Conf  
Access Mode User Password  
Configuration Mode User Password  
Continued on next page…..  
ACC.P  
cnF.P  
AACC 2000 Carbon  
Nov. 1, 1997  
100  
 
Marathon Monitors Inc.  
Special Parameters  
ABC Constant Transfer  
A Constant low 16 bits  
A Constant high 16 bits  
B Constant low 16 bits  
B Constant high 16 bits  
C Constant low 16 bits  
C Constant high 16 bits  
Transfer Location, 0 - 15  
Transfer Action; 81=write, 82=read  
AACC 2000 Carbon  
Nov. 1, 1997  
101  
 
Marathon Monitors Inc.  
INDEX  
ACCESS LEVELS .......................................................................................... 46  
Adaptive tune.......................................................................................38, 54, 73  
Adjust low-point calibration..................................................................... 89  
Adjusting the minimum on-time...................................................................... 59  
Alarm types..........................................................................................37, 43, 72  
Alarms ............................................................................... 22, 25, 43, 62, 65, 66  
Automatic mode..................................................................................22, 26, 27  
Backlash......................................................................................................... 59  
Blocking....................................................................................................43, 72  
CALIBRATING THE POSITION FEEDBACK POTENTIOMETER .................................. 59  
Changing the passwords.................................................................................. 64  
COMMISSIONING THE MOTORISED VALVE CONTROLLER..................................... 59  
Comms .................................................................................... 34, 41, 66, 75, 79  
Communication..........................................................................8, 19, 30, 41, 62  
Configuration level..................................................44, 46, 47, 48, 61, 63, 64, 83  
Configuration password........................................................................42, 48, 63  
Diagnostic alarms .........................................................................37, 43, 44, 45  
Gain scheduling .............................................................................................. 61  
Home...................................25, 27, 28, 29, 30, 32, 36, 41, 43, 47, 49, 50, 53, 64  
Inertia ............................................................................................................ 59  
Inertia and backlash settings............................................................................ 59  
Input list header .............................................................................................. 88  
Installation ...................................................................................................... 12  
Latching....................................................................................................43, 72  
Level selection................................................................................................. 48  
Manual mode .................................................................... 22, 26, 36, 60, 69, 73  
Navigation....................................................................................................... 65  
Non-latching................................................................................................... 43  
offset calibration.............................................................................................. 86  
PARAMETERS............................................................................................... 30  
Password entry ...........................................................................................47, 63  
Process alarms................................................................................................. 43  
Promoting a parameter .................................................................................... 50  
SAFETY and EMC INFORMATION................................................................ 4  
Select Low-point Calibration.................................................................... 89  
SELECTING A CONFIGURATION PARAMETER .................................... 64  
Setpoint ....... 17, 24, 25, 27, 29, 30, 33, 36, 37, 40, 62, 65, 69, 71, 72, 73, 78, 79  
Snubbers.......................................................................................................... 16  
Technical Specification ..................................................................................... 8  
TUNING ..............................................................................................52, 53, 55  
AACC 2000 Carbon  
Nov. 1, 1997  
102  
 
Marathon Monitors Inc.  
Two-point calibration.................................................................................... 88  
User calibration............................................................................................... 84  
AACC 2000 Carbon  
Nov. 1, 1997  
103  
 

KTM Motor Scooter KTM 640 User Manual
Lennox Hearth Indoor Fireplace 45HTSK User Manual
LG Electronics Cell Phone AS740 User Manual
Lochinvar Boiler 051 211 User Manual
Makita Trimmer EH561 User Manual
Maytag Convection Oven W10276986B User Manual
Maytag Washer Dryer ELECTRIC DYER User Manual
Maytag Washer Dryer MGT3800TW1 User Manual
Maytag Washer MAH 3 User Manual
Metabo Cordless Sander BF 18 LTX 90 User Manual